Abstract
We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current (DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current (AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].
G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].
G.T. Horowitz and J.E. Santos, General relativity and the cuprates, JHEP 06 (2013) 087 [arXiv:1302.6586] [INSPIRE].
Y. Ling, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic lattice in Einstein-Maxwell-dilaton gravity, JHEP 11 (2013) 006 [arXiv:1309.4580] [INSPIRE].
P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329] [INSPIRE].
A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].
D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
A. Amoretti, A. Braggio, N. Magnoli and D. Musso, Bounds on charge and heat diffusivities in momentum dissipating holography, arXiv:1411.6631 [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].
A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].
T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].
B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].
M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].
K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].
Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].
N. Iizuka and K. Maeda, Study of anisotropic black branes in asymptotically anti-de Sitter, JHEP 07 (2012) 129 [arXiv:1204.3008] [INSPIRE].
L. Cheng, X.-H. Ge and S.-J. Sin, Anisotropic plasma at finite U(1) chemical potential, JHEP 07 (2014) 083 [arXiv:1404.5027] [INSPIRE].
M. Blake and A. Donos, Quantum critical transport and the Hall angle, Phys. Rev. Lett. 114 (2015) 021601 [arXiv:1406.1659] [INSPIRE].
A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].
A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].
A. Donos, J.P. Gauntlett and C. Pantelidou, Conformal field theories in d = 4 with a helical twist, Phys. Rev. D 91 (2015) 066003 [arXiv:1412.3446] [INSPIRE].
J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-wave superconductivity in anisotropic holographic insulators, JHEP 05 (2015) 094 [arXiv:1501.07615] [INSPIRE].
S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].
S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].
S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].
K.-Y. Kim, K.K. Kim and M. Park, A simple holographic superconductor with momentum relaxation, JHEP 04 (2015) 152 [arXiv:1501.00446] [INSPIRE].
K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Gauge invariance and holographic renormalization, arXiv:1502.02100 [INSPIRE].
A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].
Y. Wang, L. Li, and N.P. Ong, Nernst effect in high-T c superconductors, Phys. Rev. B 73 (2006) 024510 [cond-mat/0510470].
P.W. Anderson, Dynamics of the vortex fluid in cuprate superconductors: the Nernst effect, cond-mat/0603726.
P.W. Anderson, Bose fluids above T c : incompressible vortex fluids and “supersolidity”, Phys. Rev. Lett. 100 (2008) 215301 [arXiv:0705.1174].
A. Amoretti and D. Musso, Universal formulae for thermoelectric transport with magnetic field and disorder, arXiv:1502.02631 [INSPIRE].
M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric response from holography, arXiv:1502.03789 [INSPIRE].
A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].
I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of holographic superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [INSPIRE].
M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic operator mixing and quasinormal modes on the brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [INSPIRE].
A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP 03 (2015) 071 [arXiv:1501.05656] [INSPIRE].
J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC transport at holographic quantum Hall transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [INSPIRE].
S. Sachdev, Nonzero-temperature transport near fractional quantum Hall critical points, Phys. Rev. B 57 (1998) 7157 [cond-mat/9709243].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1502.05386
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kim, KY., Kim, K.K., Seo, Y. et al. Thermoelectric conductivities at finite magnetic field and the Nernst effect. J. High Energ. Phys. 2015, 27 (2015). https://doi.org/10.1007/JHEP07(2015)027
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2015)027