One-loop γγ → W + L W L and γγZ L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar

Abstract

In this work we study the γγ → W + L W L and γγZ L Z L scattering processes within the effective chiral Lagrangian approach, including a light Higgs-like scalar as a dynamical field together with the would-be-Goldstone bosons w ± and z associated to the electroweak symmetry breaking. This approach is inspired by the possibility that the Higgs-like boson be a composite particle behaving as another Goldstone boson, and assumes the existence of a mass gap between m h , m W , m Z and the potential new emergent resonances, setting an intermediate energy region (above m h,W,Z and below the resonance masses) where the use of these effective chiral Lagrangians are the most appropriate tools to compute the relevant observables. We analyse in detail the proper chiral counting rules for the present case of photon-photon scattering and provide the computation of the one-loop γγ → W + L W L and γγZ L Z L scattering amplitudes within this Effective Chiral Lagrangian approach and the Equivalence Theorem, including a discussion on the involved renormalization procedure. We also propose here a joint analysis of our results for the twophoton scattering amplitudes together with other photonic processes and electroweak (EW) precision observables for a future comparison with data. This could help to disentangle the nature of the light Higgs-like particle.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    CMS Collaboration, Constraints on the Higgs boson width from off-shell production and decay to ZZ to llll and llvv, CMS-PAS-HIG-14-002.

  6. [6]

    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D. Barducci et al., The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC, JHEP 09 (2013) 047 [arXiv:1302.2371] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].

  13. [13]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    O. Cheyette and M.K. Gaillard, The Effective One Loop Action in the Strongly Interacting Standard Electroweak Theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron-Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    A. Dobado, M.J. Herrero and T.N. Truong, Study of the Strongly Interacting Higgs Sector, Phys. Lett. B 235 (1990) 129 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Dobado, M.J. Herrero and J. Terron, The Role of Chiral Lagrangians in Strongly Interacting W(l) W(l) Signals at pp Supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].

    Google Scholar 

  26. [26]

    A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    M. Herrero and E. Ruiz-Morales, Study of γγ → W + L W L and γγZ L Z L reactions with chiral Lagrangians, Phys. Lett. B 296 (1992) 397 [hep-ph/9208220] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M.J. Herrero and E. Ruiz Morales, The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    M.J. Herrero and E. Ruiz Morales, Nondecoupling effects of the SM Higgs boson to one loop, Nucl. Phys. B 437 (1995) 319 [hep-ph/9411207] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  36. [36]

    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to W L W L scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, arXiv:1403.7386 [INSPIRE].

  42. [42]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].

    Article  Google Scholar 

  46. [46]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  47. [47]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  50. [50]

    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  51. [51]

    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    G.J. Gounaris, R. Kogerler and H. Neufeld, Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners, Phys. Rev. D 34 (1986) 3257 [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    A. Dobado and J.R. Pelaez, On the equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].

  54. [54]

    A. Dobado and J.R. Pelaez, The equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].

  55. [55]

    C. Grosse-Knetter and I. Kuss, The equivalence theorem and effective Lagrangians, Z. Phys. C 66 (1995) 95 [hep-ph/9403291] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. [56]

    H.-J. He, Y.-P. Kuang and X.-y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism, Phys. Lett. B 329 (1994) 278 [hep-ph/9403283] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys. B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A. Dobado, A. Gómez-Nicola, A.L. Maroto and J.R. Peláez, Effective Lagrangians for the Standard Model, Springer Verlag, (1997).

  59. [59]

    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [arXiv:1307.5017] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    G. Buchalla, O. Catà and C. Krause, On the Power Counting in Effective Field Theories, Phys. Lett. B 731 (2014) 80 [arXiv:1312.5624] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    J. Hirn and J. Stern, Lepton-number violation and right-handed neutrinos in Higgs-less effective theories, Phys. Rev. D 73 (2006) 056001 [hep-ph/0504277] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    A. Dobado and J. Morales, A Note on the γγπ 0 π 0 reaction in the 1/N expansion of χ(PT), Phys. Lett. B 365 (1996) 264 [hep-ph/9511244] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    A. Dobado and J. Morales, Pion mass effects in the large-N limit of chi(PT), Phys. Rev. D 52 (1995) 2878 [hep-ph/9407321] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    J.F. Donoghue, B.R. Holstein and Y.C. Lin, The reaction γγπ 0 π 0 and Chiral Loops, Phys. Rev. D 37 (1988) 2423 [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  68. [68]

    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    J. Bijnens, S. Dawson and G. Valencia, γγπ 0 π 0 and K L π 0 γγ in the chiral quark model, Phys. Rev. D 44 (1991) 3555 [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions, Nucl. Phys. B 296 (1988) 557 [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    U. Burgi, Charged pion pair production and pion polarizabilities to two loops, Nucl. Phys. B 479 (1996) 392 [hep-ph/9602429] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    U. Burgi, Charged pion polarizabilities to two loops, Phys. Lett. B 377 (1996) 147 [hep-ph/9602421] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    L. Ametller and P. Talavera, The lowest resonance in QCD from low-energy data, arXiv:1402.2649 [INSPIRE].

  75. [75]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    N. Watanabe, Y. Kurihara, K. Sasaki and T. Uematsu, Higgs Production in Two-Photon Process and Transition Form Factor, Phys. Lett. B 728 (2014) 202 [arXiv:1311.1601] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via h → Vdecays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082 [arXiv:1307.4051] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. J. Sanz-Cillero.

Additional information

ArXiv ePrint: 1404.2866

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delgado, R.L., Dobado, A., Herrero, M.J. et al. One-loop γγ → W + L W L and γγZ L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar. J. High Energ. Phys. 2014, 149 (2014). https://doi.org/10.1007/JHEP07(2014)149

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • Chiral Lagrangians