Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The charm/bottom quark mass from heavy quarkonium at N3LO

28 September 2018

Clara Peset, Antonio Pineda & Jorge Segovia

Bottomonium spectrum with a Dirac potential model in the momentum space

12 June 2020

David Molina, Maurizio De Sanctis, … Elena Santopinto

Excited and exotic bottomonium spectroscopy from lattice QCD

25 February 2021

Sinéad M. Ryan, David J. Wilson & for the Hadron Spectrum Collaboration

P-wave quarkonium wavefunctions at the origin in the MS ¯ $$ \overline{\mathrm{MS}} $$ scheme

28 September 2021

Hee Sok Chung

Bottomonium suppression in an open quantum system using the quantum trajectories method

17 May 2021

Nora Brambilla, Miguel Ángel Escobedo, … Johannes Heinrich Weber

Exotic Hadrons with Heavy Quarks

01 November 2020

A. V. Nefediev

Is bottomonium suppression in proton-nucleus and nucleus-nucleus collisions at LHC energies due to the same effects?

15 October 2018

E. G. Ferreiro & J. P. Lansberg

Quarkonium in-medium properties from realistic lattice NRQCD

14 November 2018

Seyong Kim, Peter Petreczky & Alexander Rothkopf

Bottomonium suppression and elliptic flow using Heavy Quarkonium Quantum Dynamics

24 March 2021

Ajaharul Islam & Michael Strickland

Download PDF
  • Open Access
  • Published: 21 July 2014

The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD

  • G. Aarts1,
  • C. Allton1,
  • T. Harris2,
  • S. Kim3,
  • M. P. Lombardo4,
  • S. M. Ryan2 &
  • …
  • J.-I. Skullerud5 

Journal of High Energy Physics volume 2014, Article number: 97 (2014) Cite this article

  • 564 Accesses

  • 55 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present results on the bottomonium spectrum at temperatures above and below the deconfinement crossover temperature, T c , from dynamical lattice QCD simulations. The heavy quark is treated with a non-relativistic effective field theory on the lattice and serves as a probe of the hot medium. Ensembles with a finer spatial lattice spacing and a greater range of temperatures below T c than those previously employed by this collaboration are used. In addition, there are N f = 2 + 1 flavours of Wilson clover quark in the sea with M π ≈ 400 MeV and we perform a more careful tuning of the bottom quark mass in this work. We calculate the spectral functions of S and P wave bottomonium states using the maximum entropy method and confirm earlier findings on the survival of the ground state S wave states up to at least 2T c and the immediate dissociation of the P wave states above T c .

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. N. Brambilla et al., Heavy quarkonium: Progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

    ADS  Google Scholar 

  2. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Karsch, M.T. Mehr and H. Satz, Color screening and deconfinement for bound states of heavy quarks, Z. Phys. C 37 (1988) 617 [INSPIRE].

    ADS  Google Scholar 

  4. F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CMS collaboration, Observation of sequential Upsilon suppression in PbPb collisions, Phys. Rev. Lett. 109 (2012) 222301 [arXiv:1208.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Laine, A Resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Beraudo, J.-P. Blaizot and C. Ratti, Real and imaginary-time \( Q\;\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].

    Article  ADS  Google Scholar 

  11. N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Aarts et al., Bottomonium above deconfinement in lattice nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 061602 [arXiv:1010.3725] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Aarts et al., What happens to the ϒ and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Aarts et al., Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Amato et al., Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Mócsy and P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77 (2008) 014501 [arXiv:0705.2559] [INSPIRE].

    ADS  Google Scholar 

  20. P. Petreczky, C. Miao and A. Mócsy, Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Rothkopf, A first look at Bottomonium melting via a stochastic potential, JHEP 04 (2014) 085 [arXiv:1312.3246] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W.M. Alberico, A. Beraudo, A. De Pace and A. Molinari, Quarkonia in the deconfined phase: Effective potentials and lattice correlators, Phys. Rev. D 75 (2007) 074009 [hep-ph/0612062] [INSPIRE].

    ADS  Google Scholar 

  23. C.-Y. Wong, Heavy quarkonia in quark-gluon plasma, Phys. Rev. C 72 (2005) 034906 [hep-ph/0408020] [INSPIRE].

    ADS  Google Scholar 

  24. F. Riek and R. Rapp, Quarkonia and heavy-quark relaxation times in the quark-gluon plasma, Phys. Rev. C 82 (2010) 035201 [arXiv:1005.0769] [INSPIRE].

    ADS  Google Scholar 

  25. M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].

    ADS  Google Scholar 

  27. A. Jakovác, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].

    ADS  Google Scholar 

  28. G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].

    ADS  Google Scholar 

  29. H.T. Ding et al., Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].

    ADS  Google Scholar 

  30. S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.G. Edwards, B. Joó and H.-W. Lin, Tuning for three-flavors of anisotropic clover fermions with stout-link smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].

    ADS  Google Scholar 

  32. C. Allton et al., 2 + 1 flavour thermal studies on an anisotropic lattice, PoS(LATTICE 2013) 151 [arXiv:1401.2116] [INSPIRE].

  33. Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].

    ADS  Google Scholar 

  34. R. Morrin, A. Ó Cais, M. Peardon, S.M. Ryan and J.-I. Skullerud, Dynamical QCD simulations on anisotropic lattices, Phys. Rev. D 74 (2006) 014505 [hep-lat/0604021] [INSPIRE].

    ADS  Google Scholar 

  35. M.B. Oktay and J.-I. Skullerud, Momentum-dependence of charmonium spectral functions from lattice QCD, arXiv:1005.1209 [INSPIRE].

  36. G.P. Lepage et al., Improved nonrelativistic QCD for heavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE].

    ADS  Google Scholar 

  37. C.T.H. Davies and B.A. Thacker, Heavy quark renormalization parameters in nonrelativistic QCD, Phys. Rev. D 45 (1992) 915 [INSPIRE].

    ADS  Google Scholar 

  38. HPQCD collaboration, R.J. Dowdall et al., The Upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea, Phys. Rev. D 85 (2012) 054509 [arXiv:1110.6887] [INSPIRE].

    ADS  Google Scholar 

  39. G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas and L. Liu, Excited spectroscopy of charmed mesons from lattice QCD, JHEP 05 (2013) 021 [arXiv:1301.7670] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Detmold, S. Meinel and Z. Shi, Quarkonium at nonzero isospin density, Phys. Rev. D 87 (2013) 094504 [arXiv:1211.3156] [INSPIRE].

    ADS  Google Scholar 

  41. R.J. Dowdall, C.T.H. Davies, T. Hammant and R.R. Horgan, Bottomonium hyperfine splittings from lattice NRQCD including radiative and relativistic corrections, arXiv:1309.5797 [INSPIRE].

  42. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  43. M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Hornbostel et al., Fast fits for lattice QCD correlators, Phys. Rev. D 85 (2012) 031504 [arXiv:1111.1363] [INSPIRE].

    ADS  Google Scholar 

  45. S. Kim et al., Two topics from lattice NRQCD at non-zero temperature: Heavy quark mass dependence and S-wave bottomonium states moving in a thermal bath, PoS(LATTICE 2012)086 [arXiv:1210.7586] [INSPIRE].

  46. S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of in-medium bottomonium states using N f = 2 + 1, 483 × 12 HotQCD configurations, arXiv:1310.6461 [INSPIRE].

  47. Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for Euclidean quantum field theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, College of Science, Swansea University, Swansea, United Kingdom

    G. Aarts & C. Allton

  2. School of Mathematics, Trinity College, Dublin 2, Ireland

    T. Harris & S. M. Ryan

  3. Department of Physics, Sejong University, Seoul, 143-747, Korea

    S. Kim

  4. INFN-Laboratori Nazionali di Frascati, I-00044, Frascati, (RM), Italy

    M. P. Lombardo

  5. Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland

    J.-I. Skullerud

Authors
  1. G. Aarts
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. C. Allton
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. T. Harris
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. M. P. Lombardo
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. S. M. Ryan
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. J.-I. Skullerud
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to T. Harris.

Additional information

ArXiv ePrint: 1402.6210

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aarts, G., Allton, C., Harris, T. et al. The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD. J. High Energ. Phys. 2014, 97 (2014). https://doi.org/10.1007/JHEP07(2014)097

Download citation

  • Received: 10 March 2014

  • Revised: 28 April 2014

  • Accepted: 17 June 2014

  • Published: 21 July 2014

  • DOI: https://doi.org/10.1007/JHEP07(2014)097

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lattice QCD
  • Thermal Field Theory
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.