Abstract
We present results on the bottomonium spectrum at temperatures above and below the deconfinement crossover temperature, T c , from dynamical lattice QCD simulations. The heavy quark is treated with a non-relativistic effective field theory on the lattice and serves as a probe of the hot medium. Ensembles with a finer spatial lattice spacing and a greater range of temperatures below T c than those previously employed by this collaboration are used. In addition, there are N f = 2 + 1 flavours of Wilson clover quark in the sea with M π ≈ 400 MeV and we perform a more careful tuning of the bottom quark mass in this work. We calculate the spectral functions of S and P wave bottomonium states using the maximum entropy method and confirm earlier findings on the survival of the ground state S wave states up to at least 2T c and the immediate dissociation of the P wave states above T c .
References
N. Brambilla et al., Heavy quarkonium: Progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].
T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].
F. Karsch, M.T. Mehr and H. Satz, Color screening and deconfinement for bound states of heavy quarks, Z. Phys. C 37 (1988) 617 [INSPIRE].
F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].
R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].
CMS collaboration, Observation of sequential Upsilon suppression in PbPb collisions, Phys. Rev. Lett. 109 (2012) 222301 [arXiv:1208.2826] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
M. Laine, A Resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].
Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].
A. Beraudo, J.-P. Blaizot and C. Ratti, Real and imaginary-time \( Q\;\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].
G. Aarts et al., Bottomonium above deconfinement in lattice nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 061602 [arXiv:1010.3725] [INSPIRE].
G. Aarts et al., What happens to the ϒ and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].
G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].
G. Aarts et al., Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].
A. Amato et al., Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].
A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].
A. Mócsy and P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77 (2008) 014501 [arXiv:0705.2559] [INSPIRE].
P. Petreczky, C. Miao and A. Mócsy, Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].
A. Rothkopf, A first look at Bottomonium melting via a stochastic potential, JHEP 04 (2014) 085 [arXiv:1312.3246] [INSPIRE].
W.M. Alberico, A. Beraudo, A. De Pace and A. Molinari, Quarkonia in the deconfined phase: Effective potentials and lattice correlators, Phys. Rev. D 75 (2007) 074009 [hep-ph/0612062] [INSPIRE].
C.-Y. Wong, Heavy quarkonia in quark-gluon plasma, Phys. Rev. C 72 (2005) 034906 [hep-ph/0408020] [INSPIRE].
F. Riek and R. Rapp, Quarkonia and heavy-quark relaxation times in the quark-gluon plasma, Phys. Rev. C 82 (2010) 035201 [arXiv:1005.0769] [INSPIRE].
M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].
S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].
A. Jakovác, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].
G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].
H.T. Ding et al., Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].
S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].
R.G. Edwards, B. Joó and H.-W. Lin, Tuning for three-flavors of anisotropic clover fermions with stout-link smearing, Phys. Rev. D 78 (2008) 054501 [arXiv:0803.3960] [INSPIRE].
C. Allton et al., 2 + 1 flavour thermal studies on an anisotropic lattice, PoS(LATTICE 2013) 151 [arXiv:1401.2116] [INSPIRE].
Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].
R. Morrin, A. Ó Cais, M. Peardon, S.M. Ryan and J.-I. Skullerud, Dynamical QCD simulations on anisotropic lattices, Phys. Rev. D 74 (2006) 014505 [hep-lat/0604021] [INSPIRE].
M.B. Oktay and J.-I. Skullerud, Momentum-dependence of charmonium spectral functions from lattice QCD, arXiv:1005.1209 [INSPIRE].
G.P. Lepage et al., Improved nonrelativistic QCD for heavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE].
C.T.H. Davies and B.A. Thacker, Heavy quark renormalization parameters in nonrelativistic QCD, Phys. Rev. D 45 (1992) 915 [INSPIRE].
HPQCD collaboration, R.J. Dowdall et al., The Upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea, Phys. Rev. D 85 (2012) 054509 [arXiv:1110.6887] [INSPIRE].
G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas and L. Liu, Excited spectroscopy of charmed mesons from lattice QCD, JHEP 05 (2013) 021 [arXiv:1301.7670] [INSPIRE].
W. Detmold, S. Meinel and Z. Shi, Quarkonium at nonzero isospin density, Phys. Rev. D 87 (2013) 094504 [arXiv:1211.3156] [INSPIRE].
R.J. Dowdall, C.T.H. Davies, T. Hammant and R.R. Horgan, Bottomonium hyperfine splittings from lattice NRQCD including radiative and relativistic corrections, arXiv:1309.5797 [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].
K. Hornbostel et al., Fast fits for lattice QCD correlators, Phys. Rev. D 85 (2012) 031504 [arXiv:1111.1363] [INSPIRE].
S. Kim et al., Two topics from lattice NRQCD at non-zero temperature: Heavy quark mass dependence and S-wave bottomonium states moving in a thermal bath, PoS(LATTICE 2012)086 [arXiv:1210.7586] [INSPIRE].
S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of in-medium bottomonium states using N f = 2 + 1, 483 × 12 HotQCD configurations, arXiv:1310.6461 [INSPIRE].
Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for Euclidean quantum field theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1402.6210
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Aarts, G., Allton, C., Harris, T. et al. The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD. J. High Energ. Phys. 2014, 97 (2014). https://doi.org/10.1007/JHEP07(2014)097
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2014)097
Keywords
- Lattice QCD
- Thermal Field Theory