R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Mod. Phys.
81 (2009) 865 [quant-ph/0702225] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
A. Einstein, B. Podolsky and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev.
47 (1935) 777 [INSPIRE].
ADS
Article
MATH
Google Scholar
S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev.
D 21 (1980) 3305 [INSPIRE].
ADS
Google Scholar
J. Garriga, S. Kanno, M. Sasaki, J. Soda and A. Vilenkin, Observer dependence of bubble nucleation and Schwinger pair production, JCAP
12 (2012) 006 [arXiv:1208.1335] [INSPIRE].
ADS
Article
Google Scholar
J. Garriga, S. Kanno and T. Tanaka, Rest frame of bubble nucleation, JCAP
06 (2013) 034 [arXiv:1304.6681] [INSPIRE].
ADS
Article
Google Scholar
M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP
04 (2014) 009 [arXiv:1401.4137] [INSPIRE].
ADS
Article
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav.
29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP
02 (2013) 038 [arXiv:1210.7244] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davis Initial State Reconciles Chaotic Models with BICEP and Planck, arXiv:1403.6099 [INSPIRE].
BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett.
112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
ADS
Article
Google Scholar
G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev.
D 15 (1977) 2738 [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].
R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev.
D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].
ADS
MathSciNet
Google Scholar
U.H. Danielsson, On the consistency of de Sitter vacua, JHEP
12 (2002) 025 [hep-th/0210058] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
M.B. Einhorn and F. Larsen, Squeezed states in the de Sitter vacuum, Phys. Rev.
D 68 (2003) 064002 [hep-th/0305056] [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Collins, R. Holman and M.R. Martin, The Fate of the α-vacuum, Phys. Rev.
D 68 (2003) 124012 [hep-th/0306028] [INSPIRE].
ADS
Google Scholar
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.
B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev.
D 34 (1986) 373 [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Srednicki, Entropy and area, Phys. Rev. Lett.
71 (1993) 666 [hep-th/9303048] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev.
D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].
ADS
MathSciNet
Google Scholar
T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond.
A 360 (1978) 117 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. I. H. Poincare
A 9 (1968) 109.
MathSciNet
Google Scholar
J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev.
D 28 (1983) 2960 [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Mottola, Particle Creation in de Sitter Space, Phys. Rev.
D 31 (1985) 754 [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Allen, Vacuum States in de Sitter Space, Phys. Rev.
D 32 (1985) 3136 [INSPIRE].
ADS
Google Scholar
A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, University of California Press, Berkeley CA U.S.A. (1961), pg. 547.
A. Rényi, On the foundations of information theory, Rev. Int. Stat. Inst.
33 (1965) 1.
Article
MATH
Google Scholar
I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Rényi Entropies for Free Field Theories, JHEP
04 (2012) 074 [arXiv:1111.6290] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev.
D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
ADS
Google Scholar
S. Hawking, J.M. Maldacena and A. Strominger, de Sitter entropy, quantum entanglement and AdS/CFT, JHEP
05 (2001) 001 [hep-th/0002145] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
K. Koyama and J. Soda, Strongly coupled CFT in FRW universe from AdS/CFT correspondence, JHEP
05 (2001) 027 [hep-th/0101164] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
W. Fischler, S. Kundu and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, arXiv:1311.5519 [INSPIRE].