Skip to main content

Entanglement entropy of α-vacua in de Sitter space

A preprint version of the article is available at arXiv.

Abstract

We consider the entanglement entropy of a free massive scalar field in the one parameter family of α-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An α-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the α-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Rényi entropy and find that it increases as α increases. We argue these features stem from pair condensation within the non-trivial α-vacua where the pairs have an intrinsic quantum correlation.

References

  1. R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81 (2009) 865 [quant-ph/0702225] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. A. Einstein, B. Podolsky and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  Google Scholar 

  4. J. Garriga, S. Kanno, M. Sasaki, J. Soda and A. Vilenkin, Observer dependence of bubble nucleation and Schwinger pair production, JCAP 12 (2012) 006 [arXiv:1208.1335] [INSPIRE].

    ADS  Article  Google Scholar 

  5. J. Garriga, S. Kanno and T. Tanaka, Rest frame of bubble nucleation, JCAP 06 (2013) 034 [arXiv:1304.6681] [INSPIRE].

    ADS  Article  Google Scholar 

  6. M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP 04 (2014) 009 [arXiv:1401.4137] [INSPIRE].

    ADS  Article  Google Scholar 

  7. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  8. T. Takayanagi, Entanglement Entropy from a Holographic Viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davis Initial State Reconciles Chaotic Models with BICEP and Planck, arXiv:1403.6099 [INSPIRE].

  11. BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].

    ADS  Article  Google Scholar 

  12. G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].

  14. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. U.H. Danielsson, On the consistency of de Sitter vacua, JHEP 12 (2002) 025 [hep-th/0210058] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. M.B. Einhorn and F. Larsen, Squeezed states in the de Sitter vacuum, Phys. Rev. D 68 (2003) 064002 [hep-th/0305056] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. H. Collins, R. Holman and M.R. Martin, The Fate of the α-vacuum, Phys. Rev. D 68 (2003) 124012 [hep-th/0306028] [INSPIRE].

    ADS  Google Scholar 

  18. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  19. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  21. M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev. D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. I. H. Poincare A 9 (1968) 109.

    MathSciNet  Google Scholar 

  24. J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. E. Mottola, Particle Creation in de Sitter Space, Phys. Rev. D 31 (1985) 754 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  Google Scholar 

  27. A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, University of California Press, Berkeley CA U.S.A. (1961), pg. 547.

  28. A. Rényi, On the foundations of information theory, Rev. Int. Stat. Inst. 33 (1965) 1.

    Article  MATH  Google Scholar 

  29. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Rényi Entropies for Free Field Theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  30. M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  31. S. Hawking, J.M. Maldacena and A. Strominger, de Sitter entropy, quantum entanglement and AdS/CFT, JHEP 05 (2001) 001 [hep-th/0002145] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. K. Koyama and J. Soda, Strongly coupled CFT in FRW universe from AdS/CFT correspondence, JHEP 05 (2001) 027 [hep-th/0101164] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  33. W. Fischler, S. Kundu and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, arXiv:1311.5519 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugumi Kanno.

Additional information

ArXiv ePrint: 1404.6815

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kanno, S., Murugan, J., Shock, J.P. et al. Entanglement entropy of α-vacua in de Sitter space. J. High Energ. Phys. 2014, 72 (2014). https://doi.org/10.1007/JHEP07(2014)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2014)072

Keywords

  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM
  • Field Theories in Higher Dimensions