Advertisement

Ambitwistor strings and the scattering equations

  • Lionel Mason
  • David Skinner
Open Access
Article

Abstract

We show that string theories admit chiral infinite tension analogues in which only the massless parts of the spectrum survive. Geometrically they describe holomorphic maps to spaces of complex null geodesics, known as ambitwistor spaces. They have the standard critical space-time dimensions of string theory (26 in the bosonic case and 10 for the superstring). Quantization leads to the formulae for tree-level scattering amplitudes of massless particles found recently by Cachazo, He and Yuan. These representations localize the vertex operators to solutions of the same equations found by Gross and Mende to govern the behaviour of strings in the limit of high energy, fixed angle scattering. Here, localization to the scattering equations emerges naturally as a consequence of working on ambitwistor space. The worldsheet theory suggests a way to extend these amplitudes to spinor fields and to loop level. We argue that this family of string theories is a natural extension of the existing twistor string theories.

Keywords

Superstrings and Heterotic Strings Scattering Amplitudes Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S-matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    F. Cachazo and Y. Geyer, ATwistor StringInspired Formula For Tree-Level Scattering Amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  4. [4]
    F. Cachazo and D. Skinner, Gravity from Rational Curves in Twistor Space, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Cachazo, L. Mason and D. Skinner, Gravity in Twistor Space and its Grassmannian Formulation, SIGMA 10 (2014) 051 [arXiv:1207.4712] [INSPIRE].Google Scholar
  6. [6]
    Y.-t. Huang and S. Lee, A new integral formula for supersymmetric scattering amplitudes in three dimensions, Phys. Rev. Lett. 109 (2012) 191601 [arXiv:1207.4851] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and KLT Orthogonality, arXiv:1306.6575 [INSPIRE].
  9. [9]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimension, arXiv:1307.2199 [INSPIRE].
  10. [10]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, arXiv:1309.0885 [INSPIRE].
  11. [11]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    D.J. Gross and P.F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    N. Berkovits, An alternative string theory in twistor space for N = 4 super Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    L.J. Mason and D. Skinner, Heterotic twistor-string theory, Nucl. Phys. B 795 (2008) 105 [arXiv:0708.2276] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Skinner, Twistor Strings for \( \mathcal{N} \) = 8 Supergravity, arXiv:1301.0868 [INSPIRE].
  20. [20]
    E. Witten, An Interpretation of Classical Yang-Mills Theory, Phys. Lett. B 77 (1978) 394 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Isenberg, P.B. Yasskin and P.S. Green, Non-selfdual Gauge Fields, Phys. Lett. B 78 (1978) 462 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. LeBrun, Spaces of Complex Null Geodesics in Complex Riemannanian Geometry, Trans. Am. Math. Soc. 278 (1983) 209.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    L.J. Mason and D. Skinner, An Ambitwistor Yang-Mills Lagrangian, Phys. Lett. B 636 (2006) 60 [hep-th/0510262] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    N. Beisert, S. He, B.U.W. Schwab and C. Vergu, Null Polygonal Wilson Loops in Full \( \mathcal{N} \) = 4 Superspace, J. Phys. A 45 (2012) 265402 [arXiv:1203.1443] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    R.J. Baston and L.J. Mason, Conformal Gravity, the Einstein Equations and Spaces of Complex Null Geodesics, Class. Quant. Grav. 4 (1987) 815 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    C. LeBrun, Thickenings and conformal gravity, Commun. Math. Phys. 139 (1991) 1 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    J. Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  32. [32]
    O.A. Bedoya and N. Berkovits, GGI Lectures on the Pure Spinor Formalism of the Superstring, arXiv:0910.2254 [INSPIRE].
  33. [33]
    L. Brink and J.H. Schwarz, Quantum Superspace, Phys. Lett. B 100 (1981) 310 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.The Mathematical InstituteOxfordU.K.
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridgeU.K.

Personalised recommendations