Skip to main content
Log in

Pure connection gravity at one loop: instanton background

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the “pure connection” formulation General Relativity becomes a particular diffeomorphism invariant SL(2) gauge theory. Using this formalism, we compute the divergent contributions to the gravitational one-loop effective action. Calculations of the on-shell effective action simplify greatly if one specialises to an instanton background where only the anti-self-dual part of the Weyl curvature is non-vanishing. One of the most striking features of the connection formulation is that the (linearised) Euclidean action has a definite sign, unlike in the metric case. As in the metric GR, we find the logarithmically divergent contribution to consist of the volume and Euler character terms, but the arising numerical constants are different. However, the difference between the two results turns out to be always an integer. We explain this by noting that at one loop the connection and metric based quantum theories are closely related, the only difference being in a finite number of scalar modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Blagojevic and F.W. Hehl, Gauge Theories of Gravitation, arXiv:1210.3775 [INSPIRE].

  2. J.F. Plebanski, On the separation of Einsteinian substructures, J. Math. Phys. 18 (1977) 2511 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Eddington, Space, Time And Gravitation. An Outline Of The General Relativity Theory, Cambridge University Press, Cambridge U.K. (1987), pg. 218.

  4. A. Einstein, Zur allgemeinen Relativitaetstheorie, in Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 1923, Akademie der Wissenschaften, Berlin Germany (1923), pg. 32, also in The Collected Papers of Albert Einstein. Vol. 13: The Berlin Years: Writings & Correspondence, January 1922 - March 1923, R. Schulmann et al. eds., Princeton University Press, Princeton U.S.A. (2012).

  5. A. Einstein, Bemerkung zu meiner ArbeitZur allgemeinen Relativitaetstheorie’, in Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 1923, Akademie der Wissenschaften, Berlin Germany (1923), pg. 76.

  6. A. Einstein, Zur affinen Feldtheorie, in Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 1923, Akademie der Wissenschaften, Berlin Germany (1923), pg. 137.

  7. K. Krasnov, Plebanski Formulation of General Relativity: A Practical Introduction, Gen. Rel. Grav. 43 (2011) 1 [arXiv:0904.0423] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. K. Krasnov, Pure Connection Action Principle for General Relativity, Phys. Rev. Lett. 106 (2011) 251103 [arXiv:1103.4498] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Krasnov, Gravity as a diffeomorphism invariant gauge theory, Phys. Rev. D 84 (2011) 024034 [arXiv:1101.4788] [INSPIRE].

    ADS  Google Scholar 

  10. G. Delfino, K. Krasnov and C. Scarinci, Pure Connection Formalism for Gravity: Linearized Theory, arXiv:1205.7045 [INSPIRE].

  11. K. Krasnov, A Gauge Theoretic Approach to Gravity, Proc. Roy. Soc. Lond. A 468 (2012) 2129 [arXiv:1202.6183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. K. Krasnov, Renormalizable Non-Metric Quantum Gravity?, hep-th/0611182 [INSPIRE].

  13. S. Weinberg, Effective field theory, past and future, PoS (CD09) 001 [arXiv:0908.1964] [INSPIRE].

  14. D. Vassilevich, Heat kernel expansion: users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. Krasnov, Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom, Phys. Rev. D 81 (2010) 084026 [arXiv:0911.4903] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S.W. Hawking and W. Israel, General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge U.K. (1980).

    MATH  Google Scholar 

  17. G. Gibbons, S. Hawking and M. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. P.O. Mazur and E. Mottola, The gravitational measure, solution of the conformal factor problem and stability of the ground state of quantum gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Delfino, K. Krasnov and C. Scarinci, Pure connection formalism for gravity: Feynman rules and the graviton-graviton scattering, arXiv:1210.6215 [INSPIRE].

  20. T. Dray, R. Kulkarni and J. Samuel, Duality and conformal structure, J. Math. Phys. 30 (1989) 1306.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Capovilla, T. Jacobson and J. Dell, Gravitational instantons as SU(2) gauge fields, Class. Quant. Grav. 7 (1990) L1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Fine, A gauge theoretic approach to the anti-self-dual Einstein equations, arXiv:1111.5005.

  23. C. LeBrun and S. Salomon, Strong rigidity of positive quaternion-Kahler manifolds, Invent. Math. 118 (1994) 109.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. N. Hitchin, Kahlerian twistor spaces, Proc. London Math. Soc. 43 (1981) 133.

    Article  MathSciNet  MATH  Google Scholar 

  25. O. Biquard and Y. Rollin, Wormholes in ACH Einstein Manifolds, Trans. Amer. Math. Soc. 361 (2009) 2021.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Christensen and M. Duff, Quantizing Gravity with a Cosmological Constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Besse, Einstein Manifolds, Springer-Verlag, Berlin Germany (2008).

    MATH  Google Scholar 

  28. R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A.O. Barut and R. Raczka, Theory Of Group Representations And Applications, World Scientific, Singapore (1986).

  30. D. Vassilevich, Quantum gravity on CP 2, Int. J. Mod. Phys. D 2 (1993) 135 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. D. Vassilevich, One loop quantum gravity on de Sitter space, Int. J. Mod. Phys. A 8 (1993) 1637 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. M.S. Volkov and A. Wipf, Black hole pair creation in de Sitter space: A Complete one loop analysis, Nucl. Phys. B 582 (2000) 313 [hep-th/0003081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Krasnov, Spontaneous Symmetry Breaking and Gravity, Phys. Rev. D 85 (2012) 125023 [arXiv:1112.5097] [INSPIRE].

    ADS  Google Scholar 

  34. M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Krasnov.

Additional information

ArXiv ePrint: 1304.6946

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groh, K., Krasnov, K. & Steinwachs, C.F. Pure connection gravity at one loop: instanton background. J. High Energ. Phys. 2013, 187 (2013). https://doi.org/10.1007/JHEP07(2013)187

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)187

Keywords

Navigation