Skip to main content
Log in

Quark number susceptibilities from two-loop hard thermal loop perturbation theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use the recently obtained two-loop hard thermal loop perturbation theory thermodynamics functions of a plasma of quarks and gluons to compute the diagonal second- and fourth-order quark number susceptibilities. The two-loop hard thermal loop perturbation theory thermodynamic functions used are reliable in the limit that the ratio of the quark chemical potential to temperature is small. Using this result, we are able to obtain (semi-)analytic expressions for the quark number susceptibilities at leading- and next-to-leading-order in hard thermal loop perturbation theory. We compare the hard thermal loop perturbation theory results with perturbative quantum chromodynamics calculations, a Polyakov-loop Nambu-Jona-Lasinio model calculation, and lattice quantum chromodynamics results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asakawa, U.W. Heinz and B. Müller, Fluctuation probes of quark deconfinement, Phys. Rev. Lett. 85 (2000) 2072 [hep-ph/0003169] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Jeon and V. Koch, Charged particle ratio fluctuation as a signal for QGP, Phys. Rev. Lett. 85 (2000) 2076 [hep-ph/0003168] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [INSPIRE].

    ADS  Google Scholar 

  4. D. Forster, Hydrodynamics, fluctuation, broken symmetry and correlation function, Benjamin/Cummings, Menlo Park U.S.A. (1975).

    Google Scholar 

  5. H.B. Callen and T.A. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L.D. McLerran, A chiral symmetry order parameter, the lattice and nucleosynthesis, Phys. Rev. D 36 (1987) 3291 [INSPIRE].

    ADS  Google Scholar 

  8. T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian, Phys. Rept. 247 (1994) 221 [hep-ph/9401310] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Kunihiro, Quark number susceptibility and fluctuations in the vector channel at high temperatures, Phys. Lett. B 271 (1991) 395 [INSPIRE].

    ADS  Google Scholar 

  10. M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Signatures of the tricritical point in QCD, Phys. Rev. Lett. 81 (1998) 4816 [hep-ph/9806219] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD critical point, Phys. Rev. D 60 (1999) 114028 [hep-ph/9903292] [INSPIRE].

    ADS  Google Scholar 

  12. M. Stephanov, Non-Gaussian fluctuations near the QCD critical point, Phys. Rev. Lett. 102 (2009) 032301 [arXiv:0809.3450] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Toimela, Perturbative QED and QCD at finite temperatures and densities, Int. J. Theor. Phys. 24 (1985) 901 [Erratum ibid. 26 (1987) 1021] [INSPIRE].

  14. J.I. Kapusta and C. Gale, Finite temperature field theory principle and applications, 2nd ed., Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  15. A. Vuorinen, Quark number susceptibilities of hot QCD up to g 6 ln g, Phys. Rev. D 67 (2003) 074032 [hep-ph/0212283] [INSPIRE].

  16. S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2, JHEP 08 (2012) 053 [arXiv:1204.6710] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Bazavov, H. Ding and P. Petreczky, Quark number susceptibilities and color screening at high temperatures, J. Phys. Conf. Ser. 389 (2012) 012017 [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Petreczky, Lattice QCD at non-zero temperature, J. Phys. G 39 (2012) 093002 [arXiv:1203.5320] [INSPIRE].

    ADS  Google Scholar 

  20. RBC-Bielefeld collaboration, P. Petreczky, P. Hegde and A. Velytsky, Quark number fluctuations at high temperatures, PoS(LAT2009)159 [arXiv:0911.0196] [INSPIRE].

  21. HotQCD collaboration, A. Bazavov et al., Fluctuations and correlations of net baryon number, electric charge and strangeness: a comparison of lattice QCD results with the hadron resonance gas model, Phys. Rev. D 86 (2012) 034509 [arXiv:1203.0784] [INSPIRE].

  22. C. Allton et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [INSPIRE].

    ADS  Google Scholar 

  23. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [INSPIRE].

    ADS  Google Scholar 

  24. MILC collaboration, C. Bernard et al., QCD thermodynamics with three flavors of improved staggered quarks, Phys. Rev. D 71 (2005) 034504 [hep-lat/0405029] [INSPIRE].

  25. M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [INSPIRE].

    ADS  Google Scholar 

  26. R.V. Gavai and S. Gupta, Quark number susceptibilities, strangeness and dynamical confinement, Phys. Rev. D 64 (2001) 074506 [hep-lat/0103013] [INSPIRE].

    ADS  Google Scholar 

  27. R.V. Gavai and S. Gupta, The continuum limit of quark number susceptibilities, Phys. Rev. D 65 (2002) 094515 [hep-lat/0202006] [INSPIRE].

    ADS  Google Scholar 

  28. R.V. Gavai, S. Gupta and P. Majumdar, Susceptibilities and screening masses in two flavor QCD, Phys. Rev. D 65 (2002) 054506 [hep-lat/0110032] [INSPIRE].

    ADS  Google Scholar 

  29. K. Kusaka, Color singlet projection in the Nambu-Jona-Lasinio model at finite temperature, Phys. Lett. B 269 (1991) 17 [INSPIRE].

    ADS  Google Scholar 

  30. Y. Hatta and T. Ikeda, Universality, the QCD critical/tricritical point and the quark number susceptibility, Phys. Rev. D 67 (2003) 014028 [hep-ph/0210284] [INSPIRE].

    ADS  Google Scholar 

  31. C. Sasaki, B. Friman and K. Redlich, Quark number fluctuations in a chiral model at finite baryon chemical potential, Phys. Rev. D 75 (2007) 054026 [hep-ph/0611143] [INSPIRE].

    ADS  Google Scholar 

  32. C. Ratti, S. Roessner and W. Weise, Quark number susceptibilities: lattice QCD versus PNJL model, Phys. Lett. B 649 (2007) 57 [hep-ph/0701091] [INSPIRE].

    ADS  Google Scholar 

  33. S. Mukherjee, M.G. Mustafa and R. Ray, Thermodynamics of the PNJL model with nonzero baryon and isospin chemical potentials, Phys. Rev. D 75 (2007) 094015 [hep-ph/0609249] [INSPIRE].

    ADS  Google Scholar 

  34. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa and R. Ray, Susceptibilities and speed of sound from PNJL model, Phys. Rev. D 73 (2006) 114007 [hep-ph/0603050] [INSPIRE].

    ADS  Google Scholar 

  35. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa and R. Ray, PNJL model with a Van der Monde term, Phys. Rev. D 77 (2008) 094024 [arXiv:0710.2790] [INSPIRE].

    ADS  Google Scholar 

  36. S. Chatterjee and K.A. Mohan, Including the fermion vacuum fluctuations in the (2 + 1) flavor Polyakov quark meson model, Phys. Rev. D 85 (2012) 074018 [arXiv:1108.2941] [INSPIRE].

    ADS  Google Scholar 

  37. S. Chatterjee and K.A. Mohan, Fluctuations and correlations of conserved charges in the (2 + 1) Polyakov quark meson model, Phys. Rev. D 86 (2012) 114021 [arXiv:1201.3352] [INSPIRE].

    ADS  Google Scholar 

  38. A. Bhattacharyya, P. Deb, A. Lahiri and R. Ray, Susceptibilities with multi-quark interactions in PNJL model, Phys. Rev. D 82 (2010) 114028 [arXiv:1008.0768] [INSPIRE].

    ADS  Google Scholar 

  39. A. Bhattacharyya, P. Deb, A. Lahiri and R. Ray, Correlation between conserved charges in PNJL model with multi-quark interactions, Phys. Rev. D 83 (2011) 014011 [arXiv:1010.2394] [INSPIRE].

    ADS  Google Scholar 

  40. P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility in hard thermal loop approximation, Eur. Phys. J. C 23 (2002) 591 [hep-ph/0111022] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Chakraborty, M.G. Mustafa and M.H. Thoma, Quark number susceptibility, thermodynamic sum rule and hard thermal loop approximation, Phys. Rev. D 68 (2003) 085012 [hep-ph/0303009] [INSPIRE].

    ADS  Google Scholar 

  42. N. Haque, M.G. Mustafa and M.H. Thoma, Conserved density fluctuation and temporal correlation function in HTL perturbation theory, Phys. Rev. D 84 (2011) 054009 [arXiv:1103.3394] [INSPIRE].

    ADS  Google Scholar 

  43. N. Haque and M.G. Mustafa, Quark number susceptibility and thermodynamics in HTL approximation, Nucl. Phys. A 862863 (2011) 271 [arXiv:1109.0799] [INSPIRE].

    Google Scholar 

  44. N. Haque and M.G. Mustafa, A modified hard thermal loop perturbation theory, arXiv:1007.2076 [INSPIRE].

  45. J.-P. Blaizot, E. Iancu and A. Rebhan, Quark number susceptibilities from HTL resummed thermodynamics, Phys. Lett. B 523 (2001) 143 [hep-ph/0110369] [INSPIRE].

    ADS  Google Scholar 

  46. J. Blaizot, E. Iancu and A. Rebhan, Comparing different hard thermal loop approaches to quark number susceptibilities, Eur. Phys. J. C 27 (2003) 433 [hep-ph/0206280] [INSPIRE].

  47. A. Rebhan and P. Romatschke, HTL quasiparticle models of deconfined QCD at finite chemical potential, Phys. Rev. D 68 (2003) 025022 [hep-ph/0304294] [INSPIRE].

  48. Y. Jiang, H.-X. Zhu, W.-M. Sun and H.-S. Zong, The quark number susceptibility in hard thermal loop approximation, J. Phys. G 37 (2010) 055001 [arXiv:1003.5031] [INSPIRE].

    ADS  Google Scholar 

  49. J.O. Andersen, S. Mogliacci, N. Su and A. Vuorinen, Quark number susceptibilities from resummed perturbation theory, Phys. Rev. D 87 (2013) 074003 [arXiv:1210.0912] [INSPIRE].

    ADS  Google Scholar 

  50. M. He, D.-K. He, H.-T. Feng, W.-M. Sun and H.-S. Zong, Continuum study of quark-number susceptibility in an effective interaction model, Phys. Rev. D 76 (2007) 076005 [INSPIRE].

    ADS  Google Scholar 

  51. M. He, J.-F. Li, W.-M. Sun and H.-S. Zong, Quark number susceptibility around the critical end point, Phys. Rev. D 79 (2009) 036001 [arXiv:0811.1835] [INSPIRE].

    ADS  Google Scholar 

  52. D.-K. He, X.-X. Ruan, Y. Jiang, W.-M. Sun and H.-S. Zong, A model study of quark-number susceptibility at finite chemical potential and temperature, Phys. Lett. B 680 (2009) 432 [INSPIRE].

    ADS  Google Scholar 

  53. Y. Jiang, L.-J. Luo and H.-S. Zong, A model study of quark number susceptibility at finite temperature beyond rainbow-ladder approximation, JHEP 02 (2011) 066 [arXiv:1102.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K.-I. Kim, Y. Kim, S. Takeuchi and T. Tsukioka, Quark number susceptibility with finite quark mass in holographic QCD, Prog. Theor. Phys. 126 (2011) 735 [arXiv:1012.2667] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. L.-X. Cui, S. Takeuchi and Y.-L. Wu, Quark number susceptibility and QCD phase transition in the predictive soft-wall AdS/QCD model with finite temperature, Phys. Rev. D 84 (2011) 076004 [arXiv:1107.2738] [INSPIRE].

    ADS  Google Scholar 

  56. Y. Kim, S. Takeuchi and T. Tsukioka, Quark number susceptibility in holographic QCD, Prog. Theor. Phys. Suppl. 186 (2010) 498 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. B.-J. Schäfer and J. Wambach, Susceptibilities near the QCD (tri)critical point, Phys. Rev. D 75 (2007) 085015 [hep-ph/0603256] [INSPIRE].

  58. B.-J. Schäfer, M. Wagner and J. Wambach, Thermodynamics of (2 + 1)-flavor QCD: confronting models with lattice studies, Phys. Rev. D 81 (2010) 074013 [arXiv:0910.5628] [INSPIRE].

    ADS  Google Scholar 

  59. M. Bluhm, B. Kampfer and G. Soff, The QCD equation of state near T c within a quasi-particle model, Phys. Lett. B 620 (2005) 131 [hep-ph/0411106] [INSPIRE].

  60. M. Bluhm and B. Kampfer, Flavor diagonal and off-diagonal susceptibilities in a quasiparticle model of the quark-gluon plasma, Phys. Rev. D 77 (2008) 114016 [arXiv:0801.4147] [INSPIRE].

    ADS  Google Scholar 

  61. E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  62. E. Braaten and R.D. Pisarski, Resummation and gauge invariance of the gluon damping rate in hot QCD, Phys. Rev. Lett. 64 (1990) 1338 [INSPIRE].

    Article  ADS  Google Scholar 

  63. E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [INSPIRE].

    ADS  Google Scholar 

  64. J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the free energy of a hot gluon plasma, Phys. Rev. Lett. 83 (1999) 2139 [hep-ph/9902327] [INSPIRE].

    Google Scholar 

  65. J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the thermodynamics of a hot gluon plasma, Phys. Rev. D 61 (2000) 014017 [hep-ph/9905337] [INSPIRE].

    Google Scholar 

  66. J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the free energy of a hot quark-gluon plasma, Phys. Rev. D 61 (2000) 074016 [hep-ph/9908323] [INSPIRE].

  67. J.O. Andersen, E. Braaten, E. Petitgirard and M. Strickland, HTL perturbation theory to two loops, Phys. Rev. D 66 (2002) 085016 [hep-ph/0205085] [INSPIRE].

  68. J.O. Andersen, E. Petitgirard and M. Strickland, Two loop HTL thermodynamics with quarks, Phys. Rev. D 70 (2004) 045001 [hep-ph/0302069] [INSPIRE].

  69. J.O. Andersen, M. Strickland and N. Su, Gluon thermodynamics at intermediate coupling, Phys. Rev. Lett. 104 (2010) 122003 [arXiv:0911.0676] [INSPIRE].

    Article  ADS  Google Scholar 

  70. J.O. Andersen, M. Strickland and N. Su, Three-loop HTL gluon thermodynamics at intermediate coupling, JHEP 08 (2010) 113 [arXiv:1005.1603] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, NNLO hard-thermal-loop thermodynamics for QCD, Phys. Lett. B 696 (2011) 468 [arXiv:1009.4644] [INSPIRE].

    ADS  Google Scholar 

  72. J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, Three-loop HTL QCD thermodynamics, JHEP 08 (2011) 053 [arXiv:1103.2528] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J.O. Andersen, L.E. Leganger, M. Strickland and N. Su, The QCD trace anomaly, Phys. Rev. D 84 (2011) 087703 [arXiv:1106.0514] [INSPIRE].

    ADS  Google Scholar 

  74. N. Haque, M.G. Mustafa and M. Strickland, Two-loop HTL pressure at finite temperature and chemical potential, Phys. Rev. D 87 (2013) 105007 [arXiv:1212.1797] [INSPIRE].

    ADS  Google Scholar 

  75. P. Chakraborty, M.G. Mustafa and M.H. Thoma, Chiral susceptibility in hard thermal loop approximation, Phys. Rev. D 67 (2003) 114004 [hep-ph/0210159] [INSPIRE].

  76. A. Bazavov et al., Determination of α s from the QCD static energy, Phys. Rev. D 86 (2012) 114031 [arXiv:1205.6155] [INSPIRE].

    ADS  Google Scholar 

  77. S. Borsányi, Thermodynamics of the QCD transition from lattice, Nucl. Phys. A904-905 (2013) 270c [arXiv:1210.6901] [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Strickland.

Additional information

ArXiv ePrint: 1302.3228v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, N., Mustafa, M.G. & Strickland, M. Quark number susceptibilities from two-loop hard thermal loop perturbation theory. J. High Energ. Phys. 2013, 184 (2013). https://doi.org/10.1007/JHEP07(2013)184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)184

Keywords

Navigation