Skip to main content
Log in

Renormalized vs. nonrenormalized chiral transition in a magnetic background

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study analytically the chiral phase transition for hot quark matter in presence of a strong magnetic background, focusing on the existence of a critical point at zero baryon chemical potential and nonzero magnetic field. We build up a Ginzburg-Landau effective potential for the chiral condensate at finite temperature, computing the coefficients of the expansion within a chiral quark-meson model. Our conclusion is that the existence of the critical point at finite B is very sensitive to the way the ultraviolet divergences of the model are treated. In particular, we find that after renormalization, no chiral critical point is present in the phase diagram. On the other hand, such a critical point there exists when the ultraviolet divergences are not removed by a proper renormalization of the thermodynamic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

    ADS  Google Scholar 

  3. V. Voronyuk et al., (Electro-)magnetic field evolution in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 054911 [arXiv:1103.4239] [INSPIRE].

    ADS  Google Scholar 

  4. D.E. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, ’Strongly interacting matter in magnetic fields: an overview, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044 [arXiv:1111.4956] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.P. Klevansky and R.H. Lemmer, Chiral symmetry restoration in the Nambu-Jona-Lasinio model with a constant electromagnetic field, Phys. Rev. D 39 (1989) 3478 [INSPIRE].

    ADS  Google Scholar 

  7. I.A. Shushpanov and A.V. Smilga, Quark condensate in a magnetic field, Phys. Lett. B 402 (1997) 351 [hep-ph/9703201] [INSPIRE].

    ADS  Google Scholar 

  8. D.N. Kabat, K.-M. Lee and E.J. Weinberg, QCD vacuum structure in strong magnetic fields, Phys. Rev. D 66 (2002) 014004 [hep-ph/0204120] [INSPIRE].

    ADS  Google Scholar 

  9. T. Inagaki, D. Kimura and T. Murata, Four fermion interaction model in a constant magnetic field at finite temperature and chemical potential, Prog. Theor. Phys. 111 (2004) 371 [hep-ph/0312005] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. T.D. Cohen, D.A. McGady and E.S. Werbos, The chiral condensate in a constant electromagnetic field, Phys. Rev. C 76 (2007) 055201 [arXiv:0706.3208] [INSPIRE].

    ADS  Google Scholar 

  11. M. D’Elia and F. Negro, Chiral properties of strong interactions in a magnetic background, Phys. Rev. D 83 (2011) 114028 [arXiv:1103.2080] [INSPIRE].

    ADS  Google Scholar 

  12. G.S. Bali et al., QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE].

    ADS  Google Scholar 

  13. H. Suganuma and T. Tatsumi, On the behavior of symmetry and phase transitions in a strong electromagnetic field, Annals Phys. 208 (1991) 470 [INSPIRE].

    Article  ADS  Google Scholar 

  14. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B 462 (1996) 249 [hep-ph/9509320] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Theory of the magnetic catalysis of chiral symmetry breaking in QED, Nucl. Phys. B 563 (1999) 361 [hep-ph/9908320] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Universality and the magnetic catalysis of chiral symmetry breaking, Phys. Rev. D 60 (1999) 105024 [hep-th/9905116] [INSPIRE].

    ADS  Google Scholar 

  17. V.A. Miransky and I.A. Shovkovy, Magnetic catalysis and anisotropic confinement in QCD, Phys. Rev. D 66 (2002) 045006 [hep-ph/0205348] [INSPIRE].

    ADS  Google Scholar 

  18. M. Frasca and M. Ruggieri, Magnetic susceptibility of the quark condensate and polarization from chiral models, Phys. Rev. D 83 (2011) 094024 [arXiv:1103.1194] [INSPIRE].

    ADS  Google Scholar 

  19. K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys. 89 (1992) 1161 [Teor. Mat. Fiz. 89 (1991) 211] [INSPIRE].

  20. K.G. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Z. Phys. C 54 (1992) 323 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. K.G. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Theor. Math. Phys. 90 (1992) 1 [Teor. Mat. Fiz. 90 (1992) 3] [INSPIRE].

  22. E.S. Fraga and A.J. Mizher, Chiral transition in a strong magnetic background, Phys. Rev. D 78 (2008) 025016 [arXiv:0804.1452] [INSPIRE].

    ADS  Google Scholar 

  23. N.O. Agasian and S.M. Fedorov, Quark-hadron phase transition in a magnetic field, Phys. Lett. B 663 (2008) 445 [arXiv:0803.3156] [INSPIRE].

    ADS  Google Scholar 

  24. F. Bruckmann, G. Endrodi and T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop, JHEP 04 (2013) 112 [arXiv:1303.3972] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. D’Elia, S. Mukherjee and F. Sanfilippo, QCD phase transition in a strong magnetic background, Phys. Rev. D 82 (2010) 051501 [arXiv:1005.5365] [INSPIRE].

    ADS  Google Scholar 

  26. G. Endrödi, QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model, JHEP 04 (2013) 023 [arXiv:1301.1307] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Fukushima, M. Ruggieri and R. Gatto, Chiral magnetic effect in the PNJL model, Phys. Rev. D 81 (2010) 114031 [arXiv:1003.0047] [INSPIRE].

    ADS  Google Scholar 

  28. R. Gatto and M. Ruggieri, Deconfinement and chiral symmetry restoration in a strong magnetic background, Phys. Rev. D 83 (2011) 034016 [arXiv:1012.1291] [INSPIRE].

    ADS  Google Scholar 

  29. R. Gatto and M. Ruggieri, Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field, Phys. Rev. D 82 (2010) 054027 [arXiv:1007.0790] [INSPIRE].

    ADS  Google Scholar 

  30. A.J. Mizher, M. Chernodub and E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions, Phys. Rev. D 82 (2010) 105016 [arXiv:1004.2712] [INSPIRE].

    ADS  Google Scholar 

  31. A.J. Mizher, Influence of quark masses on the QCD phase diagram in the presence of a magnetic field, arXiv:1304.4571 [INSPIRE].

  32. J.O. Andersen and A. Tranberg, The chiral transition in a magnetic background: finite density effects and the functional renormalization group, JHEP 08 (2012) 002 [arXiv:1204.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Skokov, Phase diagram in an external magnetic field beyond a mean-field approximation, Phys. Rev. D 85 (2012) 034026 [arXiv:1112.5137] [INSPIRE].

    ADS  Google Scholar 

  34. K. Fukushima and J.M. Pawlowski, Magnetic catalysis in hot and dense quark matter and quantum fluctuations, Phys. Rev. D 86 (2012) 076013 [arXiv:1203.4330] [INSPIRE].

    ADS  Google Scholar 

  35. M.N Chernodub, Superconductivity of QCD vacuum in strong magnetic field, Phys. Rev. D 82 (2010) 085011 [arXiv:1008.1055] [INSPIRE].

  36. M. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model, Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M.N. Chernodub, Vafa-Witten theorem, vector meson condensates and magnetic-field-induced electromagnetic superconductivity of vacuum, Phys. Rev. D 86 (2012) 107703 [arXiv:1209.3587] [INSPIRE].

    ADS  Google Scholar 

  38. V.V. Braguta et al., Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory, Phys. Lett. B 718 (2012) 667 [arXiv:1104.3767] [INSPIRE].

    ADS  Google Scholar 

  39. P.V. Buividovich et al., Numerical study of chiral symmetry breaking in non-Abelian gauge theory with background magnetic field, Phys. Lett. B 682 (2010) 484 [arXiv:0812.1740] [INSPIRE].

    ADS  Google Scholar 

  40. P.V. Buividovich et al., Chiral magnetization of non-Abelian vacuum: A Lattice study, Nucl. Phys. B 826 (2010) 313 [arXiv:0906.0488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. P.V. Buividovich et al., Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [INSPIRE].

    ADS  Google Scholar 

  42. Y. Hidaka and A. Yamamoto, Charged vector mesons in a strong magnetic field, Phys. Rev. D 87 (2013) 094502 [arXiv:1209.0007] [INSPIRE].

    ADS  Google Scholar 

  43. E.S. Fraga and L.F. Palhares, Deconfinement in the presence of a strong magnetic background: an exercise within the MIT bag model, Phys. Rev. D 86 (2012) 016008 [arXiv:1201.5881] [INSPIRE].

    ADS  Google Scholar 

  44. E.S. Fraga, J. Noronha and L.F. Palhares, Large N c deconfinement transition in the presence of a magnetic field, arXiv:1207.7094 [INSPIRE].

  45. J.-P. Blaizot, E.S. Fraga and L.F. Palhares, Effect of quark masses on the QCD presssure in a strong magnetic background, Phys. Lett. B 722 (2013) 167 [arXiv:1211.6412] [INSPIRE].

    ADS  Google Scholar 

  46. F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].

    Article  ADS  Google Scholar 

  47. F. Preis, A. Rebhan and A. Schmitt, Holographic baryonic matter in a background magnetic field, J. Phys. G 39 (2012) 054006 [arXiv:1109.6904] [INSPIRE].

    ADS  Google Scholar 

  48. N. Callebaut and D. Dudal, On the transition temperature(s) of magnetized two-flavour holographic QCD, arXiv:1303.5674 [INSPIRE].

  49. N. Callebaut, D. Dudal and H. Verschelde, Holographic ρ mesons in an external magnetic field, JHEP 03 (2013) 033 [arXiv:1105.2217] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic anomalous conductivities and the chiral magnetic effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.O. Andersen and R. Khan, Chiral transition in a magnetic field and at finite baryon density, Phys. Rev. D 85 (2012) 065026 [arXiv:1105.1290] [INSPIRE].

    ADS  Google Scholar 

  52. J.O. Andersen, Thermal pions in a magnetic background, Phys. Rev. D 86 (2012) 025020 [arXiv:1202.2051] [INSPIRE].

    ADS  Google Scholar 

  53. J.O. Andersen, Chiral perturbation theory in a magnetic backgroundFinite-temperature effects, JHEP 10 (2012) 005 [arXiv:1205.6978] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Burikham, Magnetic phase diagram of dense holographic multiquarks in the quark-gluon plasma, JHEP 05 (2011) 121 [arXiv:1103.4379] [INSPIRE].

    Article  ADS  Google Scholar 

  55. V.G. Filev and R.C. Raskov, Magnetic catalysis of chiral symmetry breaking. a holographic prospective, Adv. High Energy Phys. 2010 (2010) 473206 [arXiv:1010.0444] [INSPIRE].

    Google Scholar 

  56. G. Lifschytz and M. Lippert, Holographic magnetic phase transition, Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [INSPIRE].

    ADS  Google Scholar 

  57. G.N. Ferrari, A.F. Garcia and M.B. Pinto, Chiral transition within effective quark models under magnetic fields, Phys. Rev. D 86 (2012) 096005 [arXiv:1207.3714] [INSPIRE].

    ADS  Google Scholar 

  58. G.D. Moore, Computing the strong sphaleron rate, Phys. Lett. B 412 (1997) 359 [hep-ph/9705248] [INSPIRE].

    ADS  Google Scholar 

  59. G.D. Moore, Do we understand the sphaleron rate?, hep-ph/0009161 [INSPIRE].

  60. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  61. K. Fukushima, D.E. Kharzeev and H.J. Warringa, Electric-current Susceptibility and the Chiral Magnetic Effect, Nucl. Phys. A 836 (2010) 311 [arXiv:0912.2961] [INSPIRE].

    ADS  Google Scholar 

  62. K. Fukushima, D.E. Kharzeev and H.J. Warringa, Real-time dynamics of the Chiral Magnetic Effect, Phys. Rev. Lett. 104 (2010) 212001 [arXiv:1002.2495] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].

    Article  ADS  Google Scholar 

  64. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Gorsky, P. Kopnin and A. Zayakin, On the chiral magnetic effect in soft-wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].

    ADS  Google Scholar 

  66. V.V. Braguta et al., The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory, Phys. Atom. Nucl. 75 (2012) 488 [arXiv:1011.3795] [INSPIRE].

    Article  ADS  Google Scholar 

  67. I. Gahramanov, T. Kalaydzhyan and I. Kirsch, Anisotropic hydrodynamics, holography and the chiral magnetic effect, Phys. Rev. D 85 (2012) 126013 [arXiv:1203.4259] [INSPIRE].

    ADS  Google Scholar 

  68. A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [INSPIRE].

    ADS  Google Scholar 

  69. S.-I. Nam, Chiral magnetic effect at low temperature, Phys. Rev. D 80 (2009) 114025 [arXiv:0911.0509] [INSPIRE].

    ADS  Google Scholar 

  70. STAR collaboration, G. Wang, Search for chiral magnetic effects in high-energy nuclear collisions, Nucl. Phys. A904-905 2013 (2013) 248c-255c [arXiv:1210.5498] [INSPIRE].

  71. S.A. Voloshin, Testing the chiral magnetic effect with central U+U collisions, Phys. Rev. Lett. 105 (2010) 172301 [arXiv:1006.1020] [INSPIRE].

    Article  ADS  Google Scholar 

  72. K. Fukushima, Views of the chiral magnetic effect, Lect. Notes Phys. 871 (2013) 241 [arXiv:1209.5064] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron starsImplications for γ-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Kojo and N. Su, The quark mass gap in a magnetic field, Phys. Lett. B 720 (2013) 192 [arXiv:1211.7318] [INSPIRE].

    ADS  Google Scholar 

  75. K. Fukushima and Y. Hidaka, Magnetic catalysis vs. magnetic inhibition, Phys. Rev. Lett. 110 (2013) 031601 [arXiv:1209.1319] [INSPIRE].

    Article  ADS  Google Scholar 

  76. D. Jungnickel and C. Wetterich, Effective action for the chiral quark-meson model, Phys. Rev. D 53 (1996) 5142 [hep-ph/9505267] [INSPIRE].

    ADS  Google Scholar 

  77. T.K. Herbst, J.M. Pawlowski and B.-J. Schaefer, The phase structure of the Polyakov-quark-meson model beyond mean field, Phys. Lett. B 696 (2011) 58 [arXiv:1008.0081] [INSPIRE].

    ADS  Google Scholar 

  78. B.-J. Schaefer and J. Wambach, The phase diagram of the quark meson model, Nucl. Phys. A 757 (2005) 479 [nucl-th/0403039] [INSPIRE].

    ADS  Google Scholar 

  79. V. Skokov, B. Stokic, B. Friman and K. Redlich, Meson fluctuations and thermodynamics of the Polyakov loop extended quark-meson model, Phys. Rev. C 82 (2010) 015206 [arXiv:1004.2665] [INSPIRE].

    ADS  Google Scholar 

  80. L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Google Scholar 

  81. M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].

  82. V. Skokov et al., Vacuum fluctuations and the thermodynamics of chiral models, Phys. Rev. D 82 (2010) 034029 [arXiv:1005.3166] [INSPIRE].

    ADS  Google Scholar 

  83. M. Frasca, Chiral symmetry in the low-energy limit of QCD at finite temperature, Phys. Rev. C 84 (2011) 055208 [arXiv:1105.5274] [INSPIRE].

    ADS  Google Scholar 

  84. V. Ritus, Radiative corrections in quantum electrodynamics with intense field and their analytical properties, Annals Phys. 69 (1972) 555 [INSPIRE].

    Article  ADS  Google Scholar 

  85. C.N. Leung and S.-Y. Wang, Gauge independent approach to chiral symmetry breaking in a strong magnetic field, Nucl. Phys. B 747 (2006) 266 [hep-ph/0510066] [INSPIRE].

    Article  ADS  Google Scholar 

  86. H. Abuki, D. Ishibashi and K. Suzuki, Crystalline chiral condensates off the tricritical point in a generalized Ginzburg-Landau approach, Phys. Rev. D 85 (2012) 074002 [arXiv:1109.1615] [INSPIRE].

    ADS  Google Scholar 

  87. H. Abuki, Fate of chiral critical point under the strong isospin asymmetry, Phys. Rev. D 87 (2013) 094006 [arXiv:1304.1904] [INSPIRE].

    ADS  Google Scholar 

  88. A. Flachi and T. Tanaka, Chiral modulations in curved space I: formalism, JHEP 02 (2011) 026 [arXiv:1012.0463] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. A. Flachi, Chiral modulations in curved space II: conifold geometries, JHEP 01 (2012) 023 [arXiv:1111.4131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ruggieri.

Additional information

ArXiv ePrint: 1305.0137

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggieri, M., Tachibana, M. & Greco, V. Renormalized vs. nonrenormalized chiral transition in a magnetic background. J. High Energ. Phys. 2013, 165 (2013). https://doi.org/10.1007/JHEP07(2013)165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)165

Keywords

Navigation