Skip to main content
Log in

Gain fractions of future neutrino oscillation facilities over T2K and NOvA

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We evaluate the probability of future neutrino oscillation facilities to discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study how this probability is affected by positive or negative hints for these observables to be found at T2K and NOνA. We consider the following facilities: LBNE; T2HK; and the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities change with the running time of T2K and NOνA conditioned to their results. We find that, if after 15 years T2K and NOνA have not observed a 90% CL hint of CP violation, then LBNE and T2HK have less than a 10% chance of achieving a 5σ discovery, whereas NF10 still has a ~ 40% chance to do so. Conversely, if T2K and NOνA have an early 90% CL hint in 5 years from now, T2HK has a rather large chance to achieve a 5σ CP violation discovery (75% or 55%, depending on whether the mass hierarchy is known or not). This is to be compared with the 90% (30%) probability that NF10 (LBNE) would have to observe the same signal at 5σ. A hierarchy measurement at 5σ is achievable at both LBNE and NF10 with more than 90% probability, irrespectively of the outcome of T2K and NOνA. We also find that if LBNE or a similar very long baseline super-beam is the only next generation facility to be built, then it is very useful to continue running T2K and NOνA (or at least T2K) beyond their original schedule in order to increase the CP violation discovery chances, given their complementarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [INSPIRE].

  2. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].

  3. Z. Maki, M. Nakagawa, Y. Ohnuki and S. Sakata, A unified model for elementary particles, Prog. Theor. Phys. 23 (1960) 1174 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].

  6. B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  7. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    ADS  Google Scholar 

  8. SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 20022007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

    ADS  Google Scholar 

  9. Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

    ADS  Google Scholar 

  10. SNO collaboration, B. Aharmim et al., Measurement of the ν e and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].

    ADS  Google Scholar 

  11. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

    ADS  Google Scholar 

  12. SNO collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Bellini et al., Precision measurement of the Be-7 solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    Article  ADS  Google Scholar 

  14. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  15. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  16. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].

    ADS  Google Scholar 

  18. KamLAND collaboration, A. Gando et al., Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].

    ADS  Google Scholar 

  19. K2K collaboration, M. Ahn et al., Indications of neutrino oscillation in a 250 km long baseline experiment, Phys. Rev. Lett. 90 (2003) 041801 [hep-ex/0212007] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K2K collaboration, M. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE].

    ADS  Google Scholar 

  21. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  23. MINOS collaboration, P. Adamson et al., An improved measurement of muon antineutrino disappearance in MINOS, Phys. Rev. Lett. 108 (2012) 191801 [arXiv:1202.2772] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T2K collaboration, K. Abe et al., First muon-neutrino disappearance study with an off-axis beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].

    ADS  Google Scholar 

  25. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  27. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  28. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  29. S. Descotes-Genon, Combined constraints on CP-violation in the Standard Model and beyond, arXiv:1209.4016 [INSPIRE].

  30. S. Ricciardi, Measurements of the CKM angle gamma in tree-dominated decays at LHCb, EPJ Web Conf. 49 (2013) 13006 [arXiv:1302.4582] [INSPIRE].

    Article  Google Scholar 

  31. T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].

  32. NOvA collaboration, D. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μ ν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].

  33. S. Prakash, S.K. Raut and S.U. Sankar, Getting the best out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].

    ADS  Google Scholar 

  34. NOvA collaboration, M. Messier, Extending the NOvA physics program, whitepaper submitted to SNOWMASS, U.S.A. (2013).

  35. M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 11 (2012) 098] [arXiv:1203.3388] [INSPIRE].

  36. E.K. Akhmedov, S. Razzaque and A.Y. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors, JHEP 02 (2013) 082 [arXiv:1205.7071] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].

  39. D. Franco et al., Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors, JHEP 04 (2013) 008 [arXiv:1301.4332] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].

    ADS  Google Scholar 

  41. S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].

    ADS  Google Scholar 

  42. L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the neutrino mass hierarchy at an intermediate baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [INSPIRE].

    ADS  Google Scholar 

  43. L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [INSPIRE].

    ADS  Google Scholar 

  44. X. Qian et al., Mass hierarchy resolution in reactor anti-neutrino experiments: parameter degeneracies and detector energy response, Phys. Rev. D 87 (2013) 033005 [arXiv:1208.1551] [INSPIRE].

    ADS  Google Scholar 

  45. X. Qian et al., Statistical evaluation of experimental determinations of neutrino mass hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].

    ADS  Google Scholar 

  46. E. Ciuffoli et al., Medium baseline reactor neutrino experiments with 2 identical detectors, arXiv:1211.6818 [INSPIRE].

  47. E. Ciuffoli, J. Evslin and X. Zhang, Mass hierarchy determination using neutrinos from multiple reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Schwetz, What is the probability that θ 13 and CP-violation will be discovered in future neutrino oscillation experiments?, Phys. Lett. B 648 (2007) 54 [hep-ph/0612223] [INSPIRE].

    ADS  Google Scholar 

  49. M. Blennow and E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES, Comput. Phys. Commun. 181 (2010) 227 [arXiv:0903.3985] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Ikeda, Recent results from T2K, talk at Rencontres de Moriond, https://indico.in2p3.fr/getFile.py/access?contribId=58&sessionId=4&resId=0&materialId=slides&confId=7411, La Thuile Italy March 2013.

  53. NOvA collaboration, R. Patterson, The NOvA experiment: status and outlook, Nucl. Phys. Proc. Suppl. 235-236 (2013) 151 [arXiv:1209.0716] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Koseki, J-PARC upgrade, at 1st Open meeting for the Hyper-Kamiokande Project, http://indico.ipmu.jp/indico/contributionDisplay.py?sessionId=3&contribId=13&confId=7, Japan August 2012.

  55. P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ 13 & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].

    Article  ADS  Google Scholar 

  57. LBNE collaboration, T. Akiri et al., The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups, arXiv:1110.6249 [INSPIRE].

  58. S. Geer, O. Mena and S. Pascoli, A Low energy neutrino factory for large θ 13, Phys. Rev. D 75 (2007) 093001 [hep-ph/0701258] [INSPIRE].

    ADS  Google Scholar 

  59. C. Ankenbrandt et al., Low-energy neutrino factory design, Phys. Rev. ST Accel. Beams 12 (2009) 070101 [INSPIRE].

    Article  ADS  Google Scholar 

  60. E. Fernandez Martinez, T. Li, S. Pascoli and O. Mena, Improvement of the low energy neutrino factory, Phys. Rev. D 81 (2010) 073010 [arXiv:0911.3776] [INSPIRE].

    ADS  Google Scholar 

  61. A. Dighe, S. Goswami and S. Ray, Optimization of the baseline and the parent muon energy for a low energy neutrino factory, Phys. Rev. D 86 (2012) 073001 [arXiv:1110.3289] [INSPIRE].

    ADS  Google Scholar 

  62. P. Ballett and S. Pascoli, Understanding the performance of the low energy neutrino factory: the dependence on baseline distance and stored-muon energy, Phys. Rev. D 86 (2012) 053002 [arXiv:1201.6299] [INSPIRE].

    ADS  Google Scholar 

  63. K. Abe et al., Letter of intent: the Hyper-Kamiokande experimentdetector design and physics potential, arXiv:1109.3262 [INSPIRE].

  64. M. Shiozawa, Hyper-Kamiokande, talk at Neutrino at the Turning Point (NuTURN2012), http://agenda.infn.it/contributionDisplay.py?contribId=15&sessionId=3&confId=4722, Italy May 2012.

  65. M. Yokoyama, Long baseline experiment and proton decay search using Hyper-K, at 1st Open meeting for the Hyper-Kamiokande project, http://indico.ipmu.jp/indico/contributionDisplay.py?sessionId=4&contribId=28&confId=7, Japan August 2012.

  66. J.-E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, Physics potential of the CERN-MEMPHYS neutrino oscillation project, JHEP 04 (2007) 003 [hep-ph/0603172] [INSPIRE].

    Article  ADS  Google Scholar 

  67. P. Coloma and E. Fernandez-Martinez, Optimization of neutrino oscillation facilities for large θ 13, JHEP 04 (2012) 089 [arXiv:1110.4583] [INSPIRE].

    Article  ADS  Google Scholar 

  68. E. Baussan, M. Dracos, T. Ekelof, E.F. Martinez, H. Ohman et al., The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP-violation and mass hierarchy, arXiv:1212.5048 [INSPIRE].

  69. A. Stahl et al., Expression of interest for a very Long Baseline Neutrino Oscillation experiment (LBNO), CERN-SPSC-2012-021, CERN, Geneva Switzerland (2012) [INSPIRE].

  70. IDS-NF collaboration, S. Choubey et al., International Design Study for the Neutrino Factory, interim design report, arXiv:1112.2853 [INSPIRE].

  71. S.K. Agarwalla, P. Huber, J. Tang and W. Winter, Optimization of the neutrino factory, revisited, JHEP 01 (2011) 120 [arXiv:1012.1872] [INSPIRE].

    Article  ADS  Google Scholar 

  72. R. Bayes et al., The golden channel at a neutrino factory revisited: improved sensitivities from a magnetised iron neutrino detector, Phys. Rev. D 86 (2012) 093015 [arXiv:1208.2735] [INSPIRE].

    ADS  Google Scholar 

  73. R. Bayes, private communication.

  74. D. Indumathi and N. Sinha, Effect of τ neutrino contribution to muon signals at neutrino factories, Phys. Rev. D 80 (2009) 113012 [arXiv:0910.2020] [INSPIRE].

    ADS  Google Scholar 

  75. A. Donini, J. Gomez Cadenas and D. Meloni, The τ-contamination of the golden muon sample at the Neutrino Factory, JHEP 02 (2011) 095 [arXiv:1005.2275] [INSPIRE].

    Article  ADS  Google Scholar 

  76. P. Coloma, The τ-contamination in the golden channel at the Neutrino Factory, AIP Conf. Proc. 1382 (2011) 121 [INSPIRE].

    Article  ADS  Google Scholar 

  77. R. Dutta, D. Indumathi and N. Sinha, Tau contamination in the platinum channel at neutrino factories, Phys. Rev. D 85 (2012) 013003 [arXiv:1103.5578] [INSPIRE].

    ADS  Google Scholar 

  78. P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, arXiv:1209.5973 [INSPIRE].

  79. M. Martini, M. Ericson and G. Chanfray, Neutrino energy reconstruction problems and neutrino oscillations, Phys. Rev. D 85 (2012) 093012 [arXiv:1202.4745] [INSPIRE].

    ADS  Google Scholar 

  80. J. Nieves, F. Sanchez, I. Ruiz Simo and M. Vicente Vacas, Neutrino energy reconstruction and the shape of the CCQE-like total cross section, Phys. Rev. D 85 (2012) 113008 [arXiv:1204.5404] [INSPIRE].

    ADS  Google Scholar 

  81. O. Lalakulich, U. Mosel and K. Gallmeister, Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments, Phys. Rev. C 86 (2012) 054606 [arXiv:1208.3678] [INSPIRE].

    ADS  Google Scholar 

  82. H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Donini, D. Meloni and S. Rigolin, Clone flow analysis for a theory inspired neutrino experiment planning, JHEP 06 (2004) 011 [hep-ph/0312072] [INSPIRE].

    Article  ADS  Google Scholar 

  84. P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Coloma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, M., Coloma, P., Donini, A. et al. Gain fractions of future neutrino oscillation facilities over T2K and NOvA. J. High Energ. Phys. 2013, 159 (2013). https://doi.org/10.1007/JHEP07(2013)159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)159

Keywords

Navigation