Skip to main content
Log in

On universality of charge transport in AdS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop the holographic formulation of transport in strongly coupled two-layer systems. We identify a dc conductivity, σ dc, that is finite even in a translationally invariant setup, and universal for CFTs with a gravity dual. The thermoelectric conductivity and heat conductivity are fully determined by the electrical conductivity matrix, as a consequence of Ward identities. We use the memory-matrix approach for double-layer systems, together with Ward identities, to show that σ dc — extended to finite frequency — has no Drude peak and, similarly, that its universal value is unaffected if translation-invariance is softly broken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Rosch and N. Andrei, Conductivity of a clean one-dimensional wire, Phys. Rev. Lett. 85 (2000) 1092.

    Article  ADS  Google Scholar 

  7. N. Andrei, E. Shimshoni and A. Rosch, Low temperature transport properties of strongly interacting systems- thermal conductivity of spin-1/2 chains, cond-mat/030757.

  8. E. Shimshoni, N. Andrei and A. Rosch, Thermal conductivity of spin-1/2 chains, Phys. Rev. B 68 (2003) 104401.

    ADS  Google Scholar 

  9. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    ADS  Google Scholar 

  10. S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].

    ADS  Google Scholar 

  12. R. Mahajan, M. Barkeshli and S.A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz law, arXiv:1304.4249 [INSPIRE].

  13. K. Damle and S. Sachdev, Nonzero-temperature transport near quantum critical points, Phys. Rev. B 56 (1997) 8714.

    ADS  Google Scholar 

  14. M. Müller, J. Schmalian and L. Fritz, Graphene: a nearly perfect fluid, Phys. Rev. Lett. 103 (2009) 025301.

    Article  ADS  Google Scholar 

  15. L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Quantum critical transport in clean graphene, Phys. Rev. B 78 (2008) 085416.

    ADS  Google Scholar 

  16. G. Grignani, N. Kim and G.W. Semenoff, D7-anti-D7 bilayer: holographic dynamical symmetry breaking, Phys. Lett. B 722 (2013) 360 [arXiv:1208.0867] [INSPIRE].

    ADS  Google Scholar 

  17. R.V. Gorbachev et al., Strong Coulomb drag and broken symmetry in double-layer graphene, Nature Phys. 8 (2012) 896 [arXiv:1206.6626].

    Article  ADS  Google Scholar 

  18. G.D. Mahan, Many-particle physics, Plenum Press, U.S.A. (1990).

    Book  Google Scholar 

  19. A. Kamenev and Y. Oreg, Coulomb drag in normal metals and superconductors: diagrammatic approach, Phys. Rev. B 52 (1995) 7516 [cond-mat/9504057].

    ADS  Google Scholar 

  20. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].

    ADS  Google Scholar 

  22. S.A. Hartnoll and C.P. Herzog, Ohms Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [INSPIRE].

    ADS  Google Scholar 

  24. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. F. Bigazzi, A.L. Cotrone, D. Musso, N.P. Fokeeva and D. Seminara, Unbalanced holographic superconductors and spintronics, JHEP 02 (2012) 078 [arXiv:1111.6601] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D. Musso, Competition/enhancement of two probe order parameters in the unbalanced holographic superconductor, JHEP 06 (2013) 083 [arXiv:1302.7205] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Smolic, Holography and hydrodynamics for EMD theory with two Maxwell fields, JHEP 03 (2013) 124 [arXiv:1301.6020] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  32. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. R.C. Myers, S. Sachdev and A. Singh, Holographic quantum critical transport without self-duality, Phys. Rev. D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].

    ADS  Google Scholar 

  34. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  36. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  37. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions, W.A. Benjamin Inc., U.S.A. (1975).

  39. H. Mori, Transport, collective motion, and brownian motion, Prog. Theor. Phys. 33 (1965) 423.

    Article  ADS  MATH  Google Scholar 

  40. K. Hashimoto, N. Iizuka and T. Kimura, Towards holographic spintronics, arXiv:1304.3126 [INSPIRE].

  41. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  44. N. E. Hussey, K. Takenaka and H. Takagi, Universality of the Mott-Ioffe-Regal limit in metals, Phil. Mag. 84 (2004) 2847 [cond-mat/0404263].

    Article  ADS  Google Scholar 

  45. J.C.W. Song, D.A. Abanin and L.S. Levitov, Coulomb drag mechanisms in graphene, arXiv:1304.1450.

  46. J.C.W. Song and L.S. Levitov, Hall drag and magnetodrag in graphene, arXiv:1303.3529.

  47. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Sonner.

Additional information

ArXiv ePrint: 1304.7774v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonner, J. On universality of charge transport in AdS/CFT. J. High Energ. Phys. 2013, 145 (2013). https://doi.org/10.1007/JHEP07(2013)145

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)145

Keywords

Navigation