Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Macdonald polynomials and extended Gelfand–Tsetlin graph

01 June 2021

Grigori Olshanski

Noncommutative Painlevé Equations and Systems of Calogero Type

28 July 2018

M. Bertola, M. Cafasso & V. Rubtsov

Brownian-Huygens Propagation: Modeling Wave Functions with Discrete Particle-Antiparticle Random Walks

27 September 2022

Hrvoje J. Hrgovčić

Positivity violations of the density operator in the Caldeira-Leggett master equation

12 March 2019

Gábor Homa, József Zsolt Bernád & László Lisztes

On the Law of Large Numbers for the Empirical Measure Process of Generalized Dyson Brownian Motion

21 September 2020

Songzi Li, Xiang-Dong Li & Yong-Xiao Xie

Bound state solutions of the Klein–Gordon equation under a non-central potential: the Eckart plus a ring-shaped potential

28 January 2023

A. I. Ahmadov, M. Demirci, … M. Sh. Orujova

Examples of Interacting Particle Systems on $$\mathbb {Z}$$ Z as Pfaffian Point Processes: Annihilating and Coalescing Random Walks

10 August 2018

Barnaby Garrod, Mihail Poplavskyi, … Oleg V. Zaboronski

The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities

23 June 2020

Julio Backhoff, Giovanni Conforti, … Christian Léonard

Strong Solutions to a Beta-Wishart Particle System

09 July 2021

Benjamin Jourdain & Ezéchiel Kahn

Download PDF
  • Open Access
  • Published: 15 July 2013

Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method

  • Krzysztof BoŻek1,2,
  • Krzysztof Kutak1 &
  • Wieslaw Placzek2 

Journal of High Energy Physics volume 2013, Article number: 97 (2013) Cite this article

  • 471 Accesses

  • Metrics details

Abstract

We propose a new method for Monte Carlo solution of non-linear integral equations by combining the Newton-Kantorovich method for solving non-linear equations with the Markov Chain Monte Carlo (MCMC) method for solving linear equations. The Newton-Kantorovich method allows to express the non-linear equation as a system of the linear equations which then can be treated by the MCMC (random walk) algorithm. We apply this method to the Balitsky-Kovchegov (BK) equation describing evolution of gluon density at low x. Results of numerical computations show that the MCMC method is both precise and efficient. The presented algorithm may be particularly suited for solving more complicated and higher-dimensional non-linear integral equation, for which traditional methods become unfeasible.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.L. Albacete and C. Marquet, Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate, Phys. Rev. Lett. 105 (2010) 162301 [arXiv:1005.4065] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Dumitru et al., The ridge in proton-proton collisions at the LHC, Phys. Lett. B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].

    ADS  Google Scholar 

  4. K. Kutak and S. Sapeta, Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider, Phys. Rev. D 86 (2012) 094043 [arXiv:1205.5035] [INSPIRE].

    ADS  Google Scholar 

  5. K. Dusling and R. Venugopalan, Evidence for BFKL and saturation dynamics from di-hadron spectra at the LHC, Phys. Rev. D 87 (2013) 051502 [arXiv:1210.3890] [INSPIRE].

    ADS  Google Scholar 

  6. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

    ADS  Google Scholar 

  8. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

    ADS  Google Scholar 

  10. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

    ADS  Google Scholar 

  11. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    ADS  Google Scholar 

  12. K. Kutak, K. Golec-Biernat, S. Jadach and M. Skrzypek, Nonlinear equation for coherent gluon emission, JHEP 02 (2012) 117 [arXiv:1111.6928] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Kutak, Nonlinear extension of the CCFM equation, arXiv:1206.1223 [INSPIRE].

  14. K. Kutak, Resummation in nonlinear equation for high energy factorisable gluon density and its extension to include coherence, JHEP 12 (2012) 033 [arXiv:1206.5757] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. Kharraziha and L. Lönnblad, The linked dipole chain Monte Carlo, JHEP 03 (1998) 006 [hep-ph/9709424] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.R. Andersen, L. Lönnblad and J.M. Smillie, A parton shower for high energy jets, JHEP 07 (2011) 110 [arXiv:1104.1316] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Forsythe and R. Leibler, Matrix inversion by a Monte Carlo method, Math. Tabl. Aids. Comput. 4 (1950) 127.

    Article  MathSciNet  Google Scholar 

  21. C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and exclusive observables from dipoles in high energy collisions, JHEP 08 (2011) 103 [arXiv:1103.4321] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Polyanin and A. Manzhirov, Handbook of mathematics for engineers and scientists, Chapman and Hall/CRC, U.K. (2006)

    Book  Google Scholar 

  23. R. Enberg, K.J. Golec-Biernat and S. Munier, The high energy asymptotics of scattering processes in QCD, Phys. Rev. D 72 (2005) 074021 [hep-ph/0505101] [INSPIRE].

    ADS  Google Scholar 

  24. W. Wasow, A note on the inversion of matrices by random walks, Math. Tabl. Aids. Comput. 6 (1952) 78.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342, Krakow, Poland

    Krzysztof BoŻek & Krzysztof Kutak

  2. Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059, Krakow, Poland

    Krzysztof BoŻek & Wieslaw Placzek

Authors
  1. Krzysztof BoŻek
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Krzysztof Kutak
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wieslaw Placzek
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Krzysztof Kutak.

Additional information

ArXiv ePrint: 1305.4154

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

BoŻek, K., Kutak, K. & Placzek, W. Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method. J. High Energ. Phys. 2013, 97 (2013). https://doi.org/10.1007/JHEP07(2013)097

Download citation

  • Received: 25 May 2013

  • Accepted: 28 June 2013

  • Published: 15 July 2013

  • DOI: https://doi.org/10.1007/JHEP07(2013)097

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
  • Monte Carlo Simulations
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.