Skip to main content

Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method


We propose a new method for Monte Carlo solution of non-linear integral equations by combining the Newton-Kantorovich method for solving non-linear equations with the Markov Chain Monte Carlo (MCMC) method for solving linear equations. The Newton-Kantorovich method allows to express the non-linear equation as a system of the linear equations which then can be treated by the MCMC (random walk) algorithm. We apply this method to the Balitsky-Kovchegov (BK) equation describing evolution of gluon density at low x. Results of numerical computations show that the MCMC method is both precise and efficient. The presented algorithm may be particularly suited for solving more complicated and higher-dimensional non-linear integral equation, for which traditional methods become unfeasible.


  1. L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  2. J.L. Albacete and C. Marquet, Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate, Phys. Rev. Lett. 105 (2010) 162301 [arXiv:1005.4065] [INSPIRE].

    ADS  Article  Google Scholar 

  3. A. Dumitru et al., The ridge in proton-proton collisions at the LHC, Phys. Lett. B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].

    ADS  Google Scholar 

  4. K. Kutak and S. Sapeta, Gluon saturation in dijet production in p-Pb collisions at Large Hadron Collider, Phys. Rev. D 86 (2012) 094043 [arXiv:1205.5035] [INSPIRE].

    ADS  Google Scholar 

  5. K. Dusling and R. Venugopalan, Evidence for BFKL and saturation dynamics from di-hadron spectra at the LHC, Phys. Rev. D 87 (2013) 051502 [arXiv:1210.3890] [INSPIRE].

    ADS  Google Scholar 

  6. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

    ADS  Article  Google Scholar 

  7. Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

    ADS  Google Scholar 

  8. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

    ADS  Article  Google Scholar 

  9. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

    ADS  Google Scholar 

  10. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

    ADS  Google Scholar 

  11. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    ADS  Google Scholar 

  12. K. Kutak, K. Golec-Biernat, S. Jadach and M. Skrzypek, Nonlinear equation for coherent gluon emission, JHEP 02 (2012) 117 [arXiv:1111.6928] [INSPIRE].

    ADS  Article  Google Scholar 

  13. K. Kutak, Nonlinear extension of the CCFM equation, arXiv:1206.1223 [INSPIRE].

  14. K. Kutak, Resummation in nonlinear equation for high energy factorisable gluon density and its extension to include coherence, JHEP 12 (2012) 033 [arXiv:1206.5757] [INSPIRE].

    ADS  Article  Google Scholar 

  15. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  16. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  17. H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].

    ADS  Article  Google Scholar 

  18. H. Kharraziha and L. Lönnblad, The linked dipole chain Monte Carlo, JHEP 03 (1998) 006 [hep-ph/9709424] [INSPIRE].

    ADS  Article  Google Scholar 

  19. J.R. Andersen, L. Lönnblad and J.M. Smillie, A parton shower for high energy jets, JHEP 07 (2011) 110 [arXiv:1104.1316] [INSPIRE].

    ADS  Article  Google Scholar 

  20. G. Forsythe and R. Leibler, Matrix inversion by a Monte Carlo method, Math. Tabl. Aids. Comput. 4 (1950) 127.

    MathSciNet  Article  Google Scholar 

  21. C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and exclusive observables from dipoles in high energy collisions, JHEP 08 (2011) 103 [arXiv:1103.4321] [INSPIRE].

    ADS  Article  Google Scholar 

  22. A. Polyanin and A. Manzhirov, Handbook of mathematics for engineers and scientists, Chapman and Hall/CRC, U.K. (2006)

    Book  Google Scholar 

  23. R. Enberg, K.J. Golec-Biernat and S. Munier, The high energy asymptotics of scattering processes in QCD, Phys. Rev. D 72 (2005) 074021 [hep-ph/0505101] [INSPIRE].

    ADS  Google Scholar 

  24. W. Wasow, A note on the inversion of matrices by random walks, Math. Tabl. Aids. Comput. 6 (1952) 78.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Krzysztof Kutak.

Additional information

ArXiv ePrint: 1305.4154

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

BoŻek, K., Kutak, K. & Placzek, W. Markov chain Mote Carlo solution of BK equation through Newton-Kantorovich method. J. High Energ. Phys. 2013, 97 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • QCD Phenomenology
  • Monte Carlo Simulations