Skip to main content
Log in

Direct constraints on the top-Higgs coupling from the 8 TeV LHC data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The LHC experiments have analyzed the 7 and 8 TeV LHC data in the main Higgs production and decay modes. Current analyses only loosely constrain an anomalous top-Higgs coupling in a direct way. In order to strongly constrain this coupling, the Higgs-top associated production is reanalyzed. Thanks to the large destructive interference in the t-channel for standard model couplings, this process can be very sensitive to both the magnitude and the sign of a non-standard top-Higgs coupling. We project the sensitivity to anomalous couplings to the integrated luminosity of 50 fb−1, corresponding to the data collected by the ATLAS and CMS experiments in 7 and 8 TeV collisions, as of 2012. We show that the combination of diphoton and multi-lepton signatures, originating from different combinations of the top and Higgs decay modes, can be a potential probe to constrain a large portion of the negative top-Higgs coupling space presently allowed by the ATLAS and CMS global fits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. LHC Higgs Cross section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].

  4. ATLAS collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127, CERN, Geneva Switzerland (2012).

  5. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-034, CERN, Geneva Switzerland (2013).

  6. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).

  7. CDF and D0 collaborations, Higgs boson studies at the Tevatron, arXiv:1303.6346 [INSPIRE].

  8. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of h → γγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  11. T. Alanne, S. Di Chiara and K. Tuominen, LHC data and aspects of new physics, arXiv:1303.3615 [INSPIRE].

  12. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].

  14. A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].

    ADS  Google Scholar 

  15. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  16. S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    Article  ADS  Google Scholar 

  18. W.J. Stirling and D. Summers, Production of an intermediate mass Higgs boson in association with a single top quark at LHC and SSC, Phys. Lett. B 283 (1992) 411 [INSPIRE].

    ADS  Google Scholar 

  19. A. Ballestrero and E. Maina, \( t\overline{b}H \) production for an intermediate mass Higgs, Phys. Lett. B 299 (1993) 312 [INSPIRE].

    ADS  Google Scholar 

  20. G. Bordes and B. van Eijk, On the associate production of a neutral intermediate mass Higgs boson with a single top quark at the LHC and SSC, Phys. Lett. B 299 (1993) 315 [INSPIRE].

    ADS  Google Scholar 

  21. T.M. Tait and C.-P. Yuan, Single top quark production as a window to physics beyond the Standard Model, Phys. Rev. D 63 (2000) 014018 [hep-ph/0007298] [INSPIRE].

    ADS  Google Scholar 

  22. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].

    ADS  Google Scholar 

  23. V. Barger, M. McCaskey and G. Shaughnessy, Single top and Higgs associated production at the LHC, Phys. Rev. D 81 (2010) 034020 [arXiv:0911.1556] [INSPIRE].

    ADS  Google Scholar 

  24. J. Campbell, R.K. Ellis and R. Röntsch, Single top production in association with a Z boson at the LHC, arXiv:1302.3856 [INSPIRE].

  25. T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett. 59 (1987) 2405 [Erratum ibid. 60 (1988) 1589] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CDF and D0 collaborations, Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

    Google Scholar 

  29. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  30. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  32. CMS collaboration, Measurement of associated production of vector bosons and top quark-antiquark pairs at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 172002 [arXiv:1303.3239] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Mele.

Additional information

ArXiv ePrint: 1304.1822

On leave of absence from Dipart. di Fisica, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy. (Emidio Gabrielli)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Gabrielli, E., Margaroli, F. et al. Direct constraints on the top-Higgs coupling from the 8 TeV LHC data. J. High Energ. Phys. 2013, 73 (2013). https://doi.org/10.1007/JHEP07(2013)073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)073

Keywords

Navigation