Skip to main content
Log in

Non-commutative/non-associative IIA (IIB) geometries from Q- and R-branes and their intersections

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss the construction of non-geometric Q- and R-branes as sources of non-geometric Q- and R-fluxes in string compactifications. The non-geometric Q-branes, being obtained via T-duality from the NS 5-brane or respectively from the KK-monopole, are still local solutions of the standard NS action, where however the background fields G and B possess non-geometric global monodromy properties. We show that using double field theory and redefined background fields \( \widetilde{G} \) and β as well as their corresponding effective action, the Q-branes are locally and globally well behaved solutions. Furthermore the R-brane solution can be at least formally constructed using dual coordinates. We derive the associated non-geometric Q- and R-fluxes and discuss that closed strings moving in the space transversal to the world-volumes of the non-geometric branes see a non-commutative or a non-associative geometry.

In the second part of the paper we construct intersecting Q- and R-brane configurations as completely supersymmetric solutions of type IIA/B supergravity with certain SU(3) × SU(3) group structures. In the near horizon limit the intersecting brane configurations lead to type II backgrounds of the form AdS 4 × M 6, where the six-dimensional compact space M 6 is a torus fibration with various non-geometric Q- and R-fluxes in the compact directions. It exhibits an interesting non-commutative and non-associate geometric structure. Furthermore we also determine some of the effective four-dimensional superpotentials originating from the non-geometric fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lerche, D. Lüst and A. Schellekens, Chiral Four-Dimensional Heterotic Strings from Selfdual Lattices, Nucl. Phys. B 287 (1987) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H. Kawai, D.C. Lewellen and S.H. Tye, Construction of Four-Dimensional Fermionic String Models, Phys. Rev. Lett. 57 (1986) 1832 [Erratum ibid. 58 (1987) 429] [INSPIRE].

  3. I. Antoniadis, C. Bachas and C. Kounnas, Four-Dimensional Superstrings, Nucl. Phys. B 289 (1987) 87 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Narain, M. Sarmadi and C. Vafa, Asymmetric Orbifolds, Nucl. Phys. B 288 (1987) 551 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Hull and B. Zwiebach, The Gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  16. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Blumenhagen and E. Plauschinn, Nonassociative Gravity in String Theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

    Article  Google Scholar 

  20. R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric Fluxes, Asymmetric Strings and Nonassociative Geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].

    ADS  Google Scholar 

  21. C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and Quantization of Non-Geometric Flux Backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Lozano-Tellechea and T. Ortin, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E.A. Bergshoeff, T. Ortin and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. J. de Boer and M. Shigemori, Exotic Branes in String Theory, arXiv:1209.6056 [INSPIRE].

  28. C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS4 flux vacua in type-II superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270] [INSPIRE].

    Article  ADS  Google Scholar 

  29. C. Caviezel et al., The Effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Jensen, The KK-Monopole/NS5-Brane in Doubled Geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Villadoro and F. Zwirner, N=1 effective potential from dual type- IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. P.G. Camara, A. Font and L. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged Supergravities from Twisted Doubled Tori and Non-Geometric String Backgrounds, Nucl. Phys. B 799 (2008) 80 [arXiv:0712.1026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  37. T. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. T. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Lopes Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis and G. Zoupanos, NonKähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

  43. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].

    Article  Google Scholar 

  45. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Lüst.

Additional information

ArXiv ePrint: 1303.1413

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haßler, F., Lüst, D. Non-commutative/non-associative IIA (IIB) geometries from Q- and R-branes and their intersections. J. High Energ. Phys. 2013, 48 (2013). https://doi.org/10.1007/JHEP07(2013)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)048

Keywords

Navigation