Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology


We discuss flavor-violating constraints and consequently possible charged Higgs boson phenomenology emerging from a four-zero Yukawa texture embedded within the Type-III 2-Higgs Doublet Model (2HDM-III). Firstly, we show in detail how we can obtain several kinds of 2HDMs when some parameters in the Yukawa texture are absent. Secondly, we present a comprehensive study of the main B-physics constraints on such parameters induced by flavor-changing processes, in particular on the off-diagonal terms of such a texture: i.e., from μe universality in τ decays, several leptonic B-decays (Bτ ν, Dμν and D s ), the semi-leptonic transition BDτν, plus BX s γ, including B 0\( \overline{B} \) 0 mixing, B s μ + μ and the radiative decay Zb \( \overline{b} \). Thirdly, having selected the surviving 2HDM-III parameter space, we show that the H c \( \overline{b} \) coupling can be very large over sizable expanses of it, in fact, a very different situation with respect to 2HDMs with a flavor discrete symmetry (i.e., \( \mathcal{Z} \) 2) and very similar to the case of the Aligned-2HDM (A2HDM) as well as of models with three or more Higgs doublets. Fourthly, we study in detail the ensuing H ± phenomenology at the Large Hadron Collider (LHC), chiefly the c \( \overline{b} \)H + production mode and the H +c \( \overline{b} \) decay channel while assuming τ + ν τ decays in the former and tbH + production in the latter, showing that significant scope exists in both cases.

This is a preview of subscription content, access via your institution.


  1. [1]

    S.L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579.

    Article  Google Scholar 

  2. [2]

    S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264.

    ADS  Article  Google Scholar 

  3. [3]

    A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519 (1968) 367 [INSPIRE].

    Google Scholar 

  4. [4]

    V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs Sector in Two Higgs Doublets Models, D 41 (1990) 3421.

  5. [5]

    G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  7. [7]

    T. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    H. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    L.J. Hall and M.B. Wise, Flavor changing Higgs - boson couplings, Nucl. Phys. B 187 (1981) 397 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    R.M. Barnett, G. Senjanović, L. Wolfenstein and D. Wyler, Implications of a light Higgs scalar, Phys. Lett. B 136 (1984) 191 [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    R.M. Barnett, G. Senjanović and D. Wyler, Tracking down Higgs scalars with enhanced couplings, Phys. Rev. D 30 (1984) 1529 [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    A. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Akeroyd and W.J. Stirling, Light charged Higgs scalars at high-energy e + e colliders, Nucl. Phys. B 447 (1995) 3 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    E. Ma, Utility of a Special Second Scalar Doublet, Mod. Phys. Lett. A 23 (2008) 647 [arXiv:0802.2917] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    Y.-F. Zhou, Texture of Yukawa coupling matrices in general two Higgs doublet model, J. Phys. G 30 (2004) 783 [hep-ph/0307240] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    S. Kanemura, T. Ota and K. Tsumura, Lepton flavor violation in Higgs boson decays under the rare tau decay results, Phys. Rev. D 73 (2006) 016006 [hep-ph/0505191] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    S. Kanemura, K. Matsuda, T. Ota, T. Shindou, E. Takasugi and K. Tsumura, Search for lepton flavor violation in the Higgs boson decay at a linear collider, Phys. Lett. B 599 (2004) 83 [hep-ph/0406316] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    T. Cheng and M. Sher, Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    D. Atwood, L. Reina and A. Soni, Phenomenology of two Higgs doublet models with flavor changing neutral currents, Phys. Rev. D 55 (1997) 3156 [hep-ph/9609279] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    J. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Measuring the fermionic couplings of the Higgs boson at future colliders as a probe of a non-minimal flavor structure, Phys. Rev. D 71 (2005) 015014 [hep-ph/0410391] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    J. Diaz-Cruz, J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Yukawa Textures and Charged Higgs Boson Phenomenology in the 2HDM-III, Phys. Rev. D 79 (2009) 095025 [arXiv:0902.4490] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    H. Fritzsch, Calculating the Cabibbo Angle, Phys. Lett. B 70 (1977) 436 [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    H. Fritzsch and Z.-z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B 555 (2003) 63 [hep-ph/0212195] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    J. Hernandez-Sanchez, L. Lopez-Lozano, R. Noriega-Papaqui and A. Rosado, Couplings of quarks in the Partially Aligned 2HDM with a four-zero texture Yukawa matrix, Phys. Rev. D 85 (2012) 071301 [arXiv:1106.5035] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    J. Barradas Guevara, F. Cazarez Bush, A. Cordero Cid, O. Felix Beltran, J. Hernandez Sanchez and R. Noriega Papaqui, Implications of Yukawa Textures in the decay H +W +γ within the 2HDM-III, J. Phys. G 37 (2010) 115008 [arXiv:1002.2626] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    A. Cordero-Cid, O. Felix-Beltran, J. Hernandez-Sanchez and R. Noriega-Papaqui, Implications of Yukawa texture in the charged Higgs boson phenomenology within 2HDM-III, PoS(Charged 2010)042, [arXiv:1105.4951] [INSPIRE].

  37. [37]

    M. Gomez-Bock and R. Noriega-Papaqui, Flavor violating decays of the Higgs bosons in the THDM-III, J. Phys. G 32 (2006) 761 [hep-ph/0509353] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    J. Hernandez-Sanchez, C. Honorato, M. Perez and J. Toscano, The γγϕ i ϕ j processes in the type-III two-Higgs-doublet model, Phys. Rev. D 85 (2012) 015020 [arXiv:1108.4074] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    M. Aoki, R. Guedes, S. Kanemura, S. Moretti, R. Santos and K. Yagyu, Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    S. Moretti, Pair production of charged Higgs scalars from electroweak gauge boson fusion, J. Phys. G 28 (2002) 2567 [hep-ph/0102116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. [41]

    S. Moretti, Improving the discovery potential of charged Higgs bosons at the Tevatron and Large Hadron Collider, Pramana 60 (2003) 369 [hep-ph/0205104] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    J. Gunion, H. Haber, F. Paige, W.-K. Tung and S. Willenbrock, Neutral and Charged Higgs Detection: Heavy Quark Fusion, Top Quark Mass Dependence and Rare Decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J. Diaz-Cruz and O. Sampayo, Contribution of gluon fusion to the production of charged Higgs at hadron colliders, Phys. Rev. D 50 (1994) 6820 [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    S. Moretti and D. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    D.J. Miller, S. Moretti, D. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    CDF collaboration, T. Aaltonen et al., Search for charged Higgs bosons in decays of top quarks in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).

  49. [49]

    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τ ν in t \( \overline{t} \) events using 4.6 f b −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-011 (2012).

  50. [50]

    CMS collaboration, H +τ in Top quark decays, CMS-PAS-HIG-11-008.

  51. [51]

    A. Akeroyd, Hidden top quark decays to charged Higgs scalars at the Tevatron, hep-ph/9509203 [INSPIRE].

  52. [52]

    A. Akeroyd, Three body decays of Higgs bosons at LEP-2 and application to a hidden fermiophobic Higgs, Nucl. Phys. B 544 (1999) 557 [hep-ph/9806337] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    A. Akeroyd, S. Moretti and J. Hernandez-Sanchez, Light charged Higgs bosons decaying to charm and bottom quarks in models with two or more Higgs doublets, Phys. Rev. D 85 (2012) 115002 [arXiv:1203.5769] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the flipped two Higgs doublet model, Phys. Rev. D 81 (2010) 075016 [arXiv:1002.4916] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    F. Borzumati and C. Greub, 2HDMs predictions for \( \overline{B} \)X s γ in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    F. Borzumati and C. Greub, Two Higgs doublet model predictions for \( \overline{B} \)X s γ in NLO QCD: Addendum, Phys. Rev. D 59 (1999) 057501 [hep-ph/9809438] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    M. Misiak et al., Estimate of B(\( \overline{B} \)X s γ) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    CDF, D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    S. Kanemura and H.-A. Tohyama, Nondecoupling effects of Higgs bosons on e + e W (L)+W (L)− in the two doublet model, Phys. Rev. D 57 (1998) 2949 [hep-ph/9707454] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    S. Kanemura, Enhancement of loop induced H ± W Z 0 vertex in two Higgs doublet model, Phys. Rev. D 61 (2000) 095001 [hep-ph/9710237] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    S. Kanemura, Possible enhancement of the e + e H ± W cross-section in the two Higgs doublet model, Eur. Phys. J. C 17 (2000) 473 [hep-ph/9911541] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    J. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, Mass matrix ansatz and lepton flavor violation in the THDM-III, Phys. Rev. D 69 (2004) 095002 [hep-ph/0401194] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    O. Félix-Beltrán, F.F. González-Canales, J. Hernández-Sánchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, A fit of a four-zeros Yukawa texture with CKM matrix elements in the framework of the 2HDM-III, work in progress.

  67. [67]

    J. Bijnens, J. Lu and J. Rathsman, Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings, JHEP 05 (2012) 118 [arXiv:1111.5760] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    R. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision test of a fermion mass texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    M. Frigerio, S. Kaneko, E. Ma and M. Tanimoto, Quaternion family symmetry of quarks and leptons, Phys. Rev. D 71 (2005) 011901 [hep-ph/0409187] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    P.H. Frampton and S. Matsuzaki, Renormalizable A 4 Model for Lepton Sector, arXiv:0806.4592 [INSPIRE].

  71. [71]

    P.H. Frampton, T.W. Kephart and S. Matsuzaki, Simplified Renormalizable T-prime Model for Tribimaximal Mixing and Cabibbo Angle, Phys. Rev. D 78 (2008) 073004 [arXiv:0807.4713] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    T. Fukuyama, H. Sugiyama and K. Tsumura, Phenomenology in the Higgs Triplet Model with the A 4 Symmetry, Phys. Rev. D 82 (2010) 036004 [arXiv:1005.5338] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    T. Fukuyama, H. Sugiyama and K. Tsumura, Phenomenology in the Zee Model with the A 4 Symmetry, Phys. Rev. D 83 (2011) 056016 [arXiv:1012.4886] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    A. Aranda, C. Bonilla, R. Ramos and A.D. Rojas, Model of flavor with quaternion symmetry, Phys. Rev. D 84 (2011) 016009 [arXiv:1105.6373] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    A. Aranda, C. Bonilla and A.D. Rojas, Neutrino masses generation in a Z 4 model, Phys. Rev. D 85 (2012) 036004 [arXiv:1110.1182] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Aranda, C. Bonilla and J.L. Diaz-Cruz, Three generations of Higgses and the cyclic groups, Phys. Lett. B 717 (2012) 248 [arXiv:1204.5558] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    G. Branco, D. Emmanuel-Costa and C. Simoes, Nearest-Neighbour Interaction from an Abelian Symmetry and Deviations from Hermiticity, Phys. Lett. B 690 (2010) 62 [arXiv:1001.5065] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    F. Botella, G. Branco and M. Rebelo, Invariants and Flavour in the General Two-Higgs Doublet Model, Phys. Lett. B 722 (2013) 76 [arXiv:1210.8163] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    Y.-S. Tsai, Decay Correlations of Heavy Leptons in e + e + , Phys. Rev. D 4 (1971) 2821 [Erratum ibid. D 13 (1976) 771] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    BaBar collaboration, B. Aubert et al., Measurements of Charged Current Lepton Universality and |V us| using Tau Lepton Decays to e \( \overline{\nu} \) e ν τ , μ \( \overline{\nu} \) μ ν τ , π ν τ and K ν τ , Phys. Rev. Lett. 105 (2010) 051602 [arXiv:0912.0242] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T’Jampens and V. Tisserand, The Two Higgs Doublet of Type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    CLEO collaboration, B. Eisenstein et al., Precision Measurement of B(D +μ + ν) and the Pseudoscalar Decay Constant f D +, Phys. Rev. D 78 (2008) 052003 [arXiv:0806.2112] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    Belle collaboration, A. Matyja et al., Observation of B 0D ∗− τ + ν τ decay at Belle, Phys. Rev. Lett. 99 (2007) 191807 [arXiv:0706.4429] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    BaBar collaboration, B. Aubert et al., Measurement of the Semileptonic Decays \( \overline{B} \) \( \overline{\nu} \) τ and \( \overline{B} \)D τ \( \overline{\nu} \) τ , Phys. Rev. D 79 (2009) 092002 [arXiv:0902.2660] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B} \)D(∗) τ \( \overline{\nu} \) τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD*τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of bhadron and chadron Properties at the End of 2007, arXiv:0808.1297 [INSPIRE].

  91. [91]

    G. de Divitiis, R. Petronzio and N. Tantalo, Quenched lattice calculation of semileptonic heavy-light meson form factors, JHEP 10 (2007) 062 [arXiv:0707.0587] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to \( \overline{B} \)X s γ: Standard model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    P. Ciafaloni, A. Romanino and A. Strumia, Two loop QCD corrections to charged Higgs mediated bsγ decay, Nucl. Phys. B 524 (1998) 361 [hep-ph/9710312] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    G. Degrassi and P. Slavich, QCD Corrections in two-Higgs-doublet extensions of the Standard Model with Minimal Flavor Violation, Phys. Rev. D 81 (2010) 075001 [arXiv:1002.1071] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B} \)X s γ in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    CLEO collaboration, S. Chen et al., Branching fraction and photon energy spectrum for b, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    Belle collaboration, K. Abe et al., A Measurement of the branching fraction for the inclusive \( \overline{B} \)X s γ decays with BELLE, Phys. Lett. B 511 (2001) 151 [hep-ex/0103042] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    Belle collaboration, A. Limosani et al., Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7-GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    BaBar collaboration, J. Lees et al., Precision Measurement of the BX s γ Photon Energy Spectrum, Branching Fraction and Direct CP Asymmetry A CP (BX s+d γ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    BaBar collaboration, J. Lees et al., Exclusive Measurements of bsγ Transition Rate and Photon Energy Spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].

    ADS  Google Scholar 

  101. [101]

    BaBar collaboration, B. Aubert et al., Measurement of the \( \overline{B} \)X s γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

    ADS  Google Scholar 

  102. [102]

    Z.-j. Xiao and L. Guo, B 0\( \overline{B} \) 0 mixing and \( \overline{B} \)X s γ decay in the third type 2HDM: Effects of NLO QCD contributions, Phys. Rev. D 69 (2004) 014002 [hep-ph/0309103] [INSPIRE].

    ADS  Google Scholar 

  103. [103]

    N. Cabibbo and L. Maiani, The Lifetime of Charmed Particles, Phys. Lett. B 79 (1978) 109 [INSPIRE].

    ADS  Google Scholar 

  104. [104]

    Y. Nir, The Mass Ratio m c /m b in Semileptonic B Decays, Phys. Lett. B 221 (1989) 184 [INSPIRE].

    ADS  Google Scholar 

  105. [105]

    A. Ali and C. Greub, Inclusive photon energy spectrum in rare B decays, Z. Phys. C 49 (1991) 431 [INSPIRE].

    Google Scholar 

  106. [106]

    A. Ali and C. Greub, Photon energy spectrum inX s γ and comparison with data, Phys. Lett. B 361 (1995) 146 [hep-ph/9506374] [INSPIRE].

    ADS  Google Scholar 

  107. [107]

    A. Ali and C. Greub, A Profile of the final states in \( \overline{B} \)X s γ and an estimate of the branching ratio BR (BK γ), Phys. Lett. B 259 (1991) 182 [INSPIRE].

    ADS  Google Scholar 

  108. [108]

    N. Pott, Bremsstrahlung corrections to the decay b → sγ, Phys. Rev. D 54 (1996) 938 [hep-ph/9512252] [INSPIRE].

    ADS  Google Scholar 

  109. [109]

    M. Trott and M.B. Wise, On theories of enhanced CP-violation in B s,d meson mixing, JHEP 11 (2010) 157 [arXiv:1009.2813] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    D. Bowser-Chao, K.-m. Cheung and W.-Y. Keung, Phase effect of a general two Higgs doublet model in b, Phys. Rev. D 59 (1999) 115006 [hep-ph/9811235] [INSPIRE].

    ADS  Google Scholar 

  111. [111]

    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the B 0\( \overline{B} \) 0 mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

    ADS  Article  Google Scholar 

  112. [112]

    H.E. Haber and H.E. Logan, Radiative corrections to the Zb \( \overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  113. [113]

    H.E. Logan, Radiative corrections to the Zb \( \overline{b} \) vertex and constraints on extended Higgs sectors, hep-ph/9906332 [INSPIRE].

  114. [114]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  115. [115]

    LHCb collaboration, First Evidence for the Decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  116. [116]

    A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    H.E. Logan and U. Nierste, B(s, d) → + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    C.-S. Huang, W. Liao, Q.-S. Yan and S.-H. Zhu, B s + in a general 2 HDM and MSSM, Phys. Rev. D 63 (2001) 114021 [Erratum ibid. D 64 (2001) 059902] [hep-ph/0006250] [INSPIRE].

    ADS  Google Scholar 

  119. [119]

    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, arXiv:1303.5877 [INSPIRE].

  120. [120]

    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].

    ADS  Article  Google Scholar 

  121. [121]

    A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].

    ADS  Google Scholar 

  122. [122]

    Fermilab Lattice, MILC collaborations, A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].

    ADS  Google Scholar 

  123. [123]

    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  124. [124]

    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    R.M. Barnett, R. Cruz, J.F. Gunion and B. Hubbard, Charged Higgs Bosons at the SSC, Phys. Rev. D 47 (1993) 1048 [INSPIRE].

    ADS  Google Scholar 

  126. [126]

    LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209-GeV, hep-ex/0107031 [INSPIRE].

  127. [127]

    ATLAS collaboration, ATLAS Sensitivity Prospects for Higgs Boson Production at the LHC Running at 7 TeV, ATL-PHYS-PUB-2010-009 (2010).

  128. [128]

    S. Moretti and W.J. Stirling, Contributions of below threshold decays to MSSM Higgs branching ratios, Phys. Lett. B 347 (1995) 291 [Erratum ibid. B 366 (1996) 451] [hep-ph/9412209] [INSPIRE].

    ADS  Google Scholar 

  129. [129]

    A. Djouadi, J. Kalinowski and P. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].

    Google Scholar 

  130. [130]

    DELPHI collaboration, J. Abdallah et al., Search for charged Higgs bosons at LEP in general two Higgs doublet models, Eur. Phys. J. C 34 (2004) 399 [hep-ex/0404012] [INSPIRE].

    ADS  Google Scholar 

  131. [131]

    OPAL collaboration, G. Abbiendi et al., Search for Charged Higgs Bosons in e + e Collisions at \( \sqrt{s}=189-209 \) GeV, Eur. Phys. J. C 72 (2012) 2076 [arXiv:0812.0267] [INSPIRE].

    ADS  Google Scholar 

  132. [132]

    D. Toussaint, Renormalization effects from superheavy Higgs particles, Phys. Rev. D 18 (1978) 1626 [INSPIRE].

    ADS  Google Scholar 

  133. [133]

    S. Bertolini, Quantum effects in a two Higgs doublet model of the electroweak interactions, Nucl. Phys. B 272 (1986) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  134. [134]

    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Article  Google Scholar 

  135. [135]

    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  136. [136]

    S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011) 303 [arXiv:1108.3297] [INSPIRE].

    ADS  Google Scholar 

  137. [137]

    P.H. Chankowski, M. Krawczyk and J. Zochowski, Implications of the precision data for very light Higgs boson scenario in 2HDM(II), Eur. Phys. J. C 11 (1999) 661 [hep-ph/9905436] [INSPIRE].

    ADS  Article  Google Scholar 

  138. [138]

    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  Google Scholar 

  139. [139]

    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    ADS  Article  Google Scholar 

  140. [140]

    CDF collaboration, Search for Light Higgs Boson from Top Quark Decays, CDF Note 10104 (2010).

  141. [141]

    R. Dermisek and J.F. Gunion, Many Light Higgs Bosons in the NMSSM, Phys. Rev. D 79 (2009) 055014 [arXiv:0811.3537] [INSPIRE].

    ADS  Google Scholar 

  142. [142]

    G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC Observing the Pseudo-scalar State of a Two-Higgs Doublet Model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  143. [143]

    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  144. [144]

    A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  145. [145]

    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    ADS  Article  Google Scholar 

  146. [146]

    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

    ADS  Article  Google Scholar 

  147. [147]

    J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    ADS  Article  Google Scholar 

  148. [148]

    E. Gabrielli, B. Mele and M. Raidal, Has a Fermiophobic Higgs Boson been Detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  149. [149]

    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    ADS  Article  Google Scholar 

  150. [150]

    C.S. Li and T.C. Yuan, QCD correction to charged Higgs decay of the top quark, Phys. Rev. D 42 (1990) 3088 [Erratum ibid. D 47 (1993) 2156] [INSPIRE].

    ADS  Google Scholar 

  151. [151]

    A. Czarnecki and S. Davidson, QCD corrections to the charged Higgs decay of a heavy quark, Phys. Rev. D 48 (1993) 4183 [hep-ph/9301237] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Hernández-Sánchez.

Additional information

ArXiv ePrint: 1212.6818

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández-Sánchez, J., Moretti, S., Noriega-Papaqui, R. et al. Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology. J. High Energ. Phys. 2013, 44 (2013).

Download citation


  • Higgs Physics
  • Beyond Standard Model