Skip to main content
Log in

Minimal models with light sterile neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n R gauge singlet fermions (“righthanded neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n R  = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n R  = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  2. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors And Unified Theories, CERN Report Print-80-0576 [SPIRES].

  3. T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13–14 February, 1979.

  4. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  5. A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [SPIRES].

    ADS  Google Scholar 

  6. A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [SPIRES].

    ADS  Google Scholar 

  7. Y. Liao, Active-sterile neutrino mixing in the absence of bare active neutrino mass, Nucl. Phys. B 749 (2006) 153 [hep-ph/0604016] [SPIRES].

    Article  ADS  Google Scholar 

  8. A.E. Nelson, Effects of CP-violation from Neutral Heavy Fermions on Neutrino Oscillations and the LSND/MiniBooNE Anomalies, arXiv:1010.3970 [SPIRES].

  9. D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [SPIRES].

    Article  ADS  Google Scholar 

  10. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].

    ADS  Google Scholar 

  11. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Sorel, J.M. Conrad and M. Shaevitz, A combined analysis of short-baseline neutrino experiments in the (3+ 1) and (3+ 2) sterile neutrino oscillation hypotheses, Phys. Rev. D 70 (2004) 073004 [hep-ph/0305255] [SPIRES].

    ADS  Google Scholar 

  13. E. Akhmedov and T. Schwetz, MiniBooNE and LSND data: non-standard neutrino interactions in a (3+ 1) scheme versus (3+ 2) oscillations, JHEP 10 (2010) 115 [arXiv:1007.4171] [SPIRES].

    Article  ADS  Google Scholar 

  14. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, arXiv:1103.4570 [SPIRES].

  15. C. Giunti and M. Laveder, Short-Baseline \( {\overline \nu_\mu } \to {\overline \nu_e} \) Oscillations, Phys. Rev. D 82 (2010) 093016 [arXiv:1010.1395] [SPIRES].

    Article  ADS  Google Scholar 

  16. LSND collaboration, A. Aguilar et al., Evidence for neutrino oscillations from the observation of \( {\overline \nu_e} \) appearance in a \( {\overline \nu_\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [SPIRES].

    ADS  Google Scholar 

  17. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [SPIRES].

    Article  ADS  Google Scholar 

  18. The MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {\overline \nu_\mu } \to {\overline \nu_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [SPIRES].

    Article  ADS  Google Scholar 

  19. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  20. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [SPIRES].

    Article  ADS  Google Scholar 

  22. P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].

    ADS  Google Scholar 

  23. F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].

    Article  ADS  Google Scholar 

  25. T. Asaka, M. Shaposhnikov and A. Kusenko, Opening a new window for warm dark matter, Phys. Lett. B 638 (2006) 401 [hep-ph/0602150] [SPIRES].

    ADS  Google Scholar 

  26. T. Asaka, M. Laine and M. Shaposhnikov, Lightest sterile neutrino abundance within the nuMSM, JHEP 01 (2007) 091 [hep-ph/0612182] [SPIRES].

    Article  ADS  Google Scholar 

  27. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, JHEP 08 (2010) 117 [arXiv:1006.3795] [SPIRES].

    Article  ADS  Google Scholar 

  28. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [SPIRES].

    Article  ADS  Google Scholar 

  29. E. Giusarma et al., Constraints on massive sterile neutrino species from current and future cosmological data, Phys. Rev. D 83 (2011) 115023 [arXiv:1102.4774] [SPIRES].

    ADS  Google Scholar 

  30. A. Santamaria, Masses, mixings, Yukawa couplings and their symmetries, Phys. Lett. B 305 (1993) 90 [hep-ph/9302301] [SPIRES].

    ADS  Google Scholar 

  31. M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [SPIRES].

    Article  ADS  Google Scholar 

  32. R. Alonso et al., Summary report of MINSIS workshop in Madrid, arXiv:1009.0476 [SPIRES].

  33. The MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [SPIRES].

    Article  ADS  Google Scholar 

  34. The KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [SPIRES].

    ADS  Google Scholar 

  35. CHOOZ collaboration, M. Apollonio et al., Limits on Neutrino Oscillations from the CHOOZ Experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

  36. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13> 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  ADS  Google Scholar 

  37. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [SPIRES].

    Article  ADS  Google Scholar 

  38. Y. Liao, Lepton mixing matrix in standard model extended by one sterile neutrino, Eur. Phys. J. C 49 (2007) 783 [hep-ph/0504018] [SPIRES].

    Article  ADS  Google Scholar 

  39. SNO collaboration, B. Aharmim et al., Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory, Phys. Rev. C 81 (2010) 055504 [arXiv:0910.2984] [SPIRES].

    ADS  Google Scholar 

  40. Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [SPIRES].

    ADS  Google Scholar 

  41. T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [SPIRES].

    ADS  Google Scholar 

  42. G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [SPIRES].

    ADS  Google Scholar 

  43. Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [SPIRES].

    ADS  Google Scholar 

  44. F. Dydak et al., A Search for Muon-neutrino Oscillations in them 2 Range 0.3eV 2 to 90 eV 2, Phys. Lett. B 134 (1984) 281 [SPIRES].

    ADS  Google Scholar 

  45. C. Kraus et al., Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [SPIRES].

    Article  ADS  Google Scholar 

  46. K. Nakamura et al., The Review of Particle Physics, J. Phys. G 37 (2010) 075021.

    ADS  Google Scholar 

  47. Y. Farzan, O.L.G. Peres and A.Y. Smirnov, Neutrino mass spectrum and future beta decay experiments, Nucl. Phys. B 612 (2001) 59 [hep-ph/0105105] [SPIRES].

    Article  ADS  Google Scholar 

  48. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [SPIRES].

    Article  ADS  Google Scholar 

  49. K.A. Olive and M.S. Turner, Cosmological bounds on the masses of stable, right-handed neutrinos, Phys. Rev. D 25 (1982) 213 [SPIRES].

    ADS  Google Scholar 

  50. A. de Gouvêa, W.-C. Huang and J. Jenkins, Pseudo-Dirac Neutrinos in the New Standard Model, Phys. Rev. D 80 (2009) 073007 [arXiv:0906.1611] [SPIRES].

    ADS  Google Scholar 

  51. P.C. de Holanda and A.Y. Smirnov, Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, Phys. Rev. D 83 (2011) 113011 [arXiv:1012.5627] [SPIRES].

    ADS  Google Scholar 

  52. Y. Nir, Pseudo-Dirac solar neutrinos, JHEP 06 (2000) 039 [hep-ph/0002168] [SPIRES].

    Article  ADS  Google Scholar 

  53. M.C. Gonzalez-Garcia, C. Pena-Garay, Y. Nir and A.Y. Smirnov, Phenomenology of maximal and near-maximal lepton mixing, Phys. Rev. D 63 (2001) 013007 [hep-ph/0007227] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hernández.

Additional information

ArXiv ePrint:1106.0064

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donini, A., Hernández, P., López-Pavón, J. et al. Minimal models with light sterile neutrinos. J. High Energ. Phys. 2011, 105 (2011). https://doi.org/10.1007/JHEP07(2011)105

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)105

Keywords

Navigation