Skip to main content

TeV scale implications of non commutative space time in laboratory frame with polarized beams

Abstract

We analyze e + e  → γγ, e γ → e γ and γγ → e + e processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative (NC) parameter i.e. O2), while with polarized beams these corrections appear at first order (O(Θ)) in cross section. The corrections in Compton case can probe the magnetic component \( \left( {{{\overrightarrow \Theta }_B}} \right) \) while in Pair production and Pair annihilation probe the electric component \( \left( {{{\overrightarrow \Theta }_E}} \right) \) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider (ILC).

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [SPIRES].

    ADS  MATH  Article  Google Scholar 

  3. [3]

    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    ADS  Article  Google Scholar 

  4. [4]

    A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  5. [5]

    L. Álvarez-Gaumé and M.A. Vazquez-Mozo, General properties of noncommutative field theories, Nucl. Phys. B 668 (2003) 293 [hep-th/0305093] [SPIRES].

    ADS  Article  Google Scholar 

  6. [6]

    J. Jaeckel, V.V. Khoze and A. Ringwald, Telltale traces of U(1) fields in noncommutative standard model extensions, JHEP 02 (2006) 028 [hep-ph/0508075] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Vacuum birefringence as a probe of Planck scale noncommutativity, JHEP 09 (2006) 074 [hep-ph/0607188] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  8. [8]

    R. Horvat and J. Trampetic, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  9. [9]

    B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [SPIRES].

    ADS  Google Scholar 

  10. [10]

    B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153] [SPIRES].

    ADS  Google Scholar 

  11. [11]

    X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [SPIRES].

    ADS  Google Scholar 

  12. [12]

    W. Behr et al., The Z → γγ,gg decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [SPIRES].

    ADS  Google Scholar 

  13. [13]

    G. Duplancic, P. Schupp and J. Trampetic, Comment on triple gauge boson interactions in the non-commutative electroweak sector, Eur. Phys. J. C 32 (2003) 141 [hep-ph/0309138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. [14]

    T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098] [SPIRES].

    ADS  Google Scholar 

  15. [15]

    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Strong interactions included, Eur. Phys. J. C 42 (2005) 499 [hep-ph/0503064] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  17. [17]

    P.K. Das, N.G. Deshpande and G. Rajasekaran, Móller and Bhaba scattering in the noncommutative SM, Phys. Rev. D 77 (2008) 035010 [arXiv:0710.4608] [SPIRES].

    ADS  Google Scholar 

  18. [18]

    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for noncommutative QED at high energy e + e colliders, hep-ph/0201275 [SPIRES].

  19. [19]

    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for non-commutative interactions at linear colliders, Phys. Rev. D 64 (2001) 075012 [hep-ph/0010354] [SPIRES].

    ADS  Google Scholar 

  20. [20]

    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Noncommutativity and unitarity violation in gauge boson scattering, Phys. Rev. D 66 (2002) 036001 [hep-ph/0112003] [SPIRES].

    ADS  Google Scholar 

  21. [21]

    P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [SPIRES].

    ADS  Article  Google Scholar 

  22. [22]

    M. Haghighat, M.M. Ettefaghi and M. Zeinali, Photon neutrino scattering in non-commutative space, Phys. Rev. D 73 (2006) 013007 [hep-ph/0511042] [SPIRES].

    ADS  Google Scholar 

  23. [23]

    M. Mohammadi Najafabadi, Semi-leptonic decay of a polarized top quark in the noncommutative standard model, Phys. Rev. D 74 (2006) 025021 [hep-ph/0606017] [SPIRES].

    ADS  Google Scholar 

  24. [24]

    N. Mahajan, t → bW in noncommutative standard model, Phys. Rev. D 68 (2003) 095001 [hep-ph/0304235] [SPIRES].

    ADS  Google Scholar 

  25. [25]

    E.O. Iltan, The Z → ℓ+ and W → ν l l + decays in the noncommutative standard model, Phys. Rev. D 66 (2002) 034011 [hep-ph/0204332] [SPIRES].

    ADS  Google Scholar 

  26. [26]

    N.G. Deshpande and X.-G. He, Triple neutral gauge boson couplings in noncommutative standard model, Phys. Lett. B 533 (2002) 116 [hep-ph/0112320] [SPIRES].

    ADS  Google Scholar 

  27. [27]

    M.M. Najafabadi, Noncommutative standard model in top quark sector, Phys. Rev. D 77 (2008) 116011 [arXiv:0803.2340] [SPIRES].

    ADS  Google Scholar 

  28. [28]

    J. Trampetic, Renormalizability and phenomenology of theta-expanded noncommutative gauge field theory, Fortschr. Phys. 56 (2008) 521 [arXiv:0802.2030] [SPIRES].

    MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Nonzero Z → γ γ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007) 097701 [SPIRES].

    ADS  Google Scholar 

  30. [30]

    OPAL collaboration, G. Abbiendi et al., Test of non-commutative QED in the process e + e  → γγ at LEP, Phys. Lett. B 568 (2003) 181 [hep-ex/0303035] [SPIRES].

    ADS  Google Scholar 

  31. [31]

    B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity, Phys. Rev. D 72 (2005) 054004 [hep-ph/0503133] [SPIRES].

    ADS  Google Scholar 

  32. [32]

    B. Melic, K. Passek-Kumericki and J. Trampetic, K → πγ decay and space-time noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231] [SPIRES].

    ADS  Google Scholar 

  33. [33]

    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at O(θ 2), Phys. Rev. D 76 (2007) 105018 [arXiv:0707.3595] [SPIRES].

    ADS  Google Scholar 

  34. [34]

    A. Prakash, A. Mitra and P.K. Das, e + e  → μ + μ scattering in the Noncommutative standard model, Phys. Rev. D 82 (2010) 055020 [arXiv:1009.3554] [SPIRES].

    ADS  Google Scholar 

  35. [35]

    P.K. Das, A. Prakash and A. Mitra, Neutral Higgs boson pair production at the LC in the Noncommutative Standard Model, Phys. Rev. D 83 (2011) 056002 [arXiv:1009.3571] [SPIRES].

    ADS  Google Scholar 

  36. [36]

    W. Wang, F. Tian and Z.-M. Sheng, Higgsstrahlung and pair production in e + e collision in the noncommutative standard model, arXiv:1105.0252 [SPIRES].

  37. [37]

    A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [SPIRES].

    ADS  Google Scholar 

  38. [38]

    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at the ILC, ECONF C 0705302 (2007) TEV05 [Acta Phys. Polon. B 38 (2007) 3647] [arXiv:0709.2359] [SPIRES].

    Google Scholar 

  39. [39]

    H. Grosse and Y. Liao, Pair production of neutral Higgs bosons through noncommutative QED interactions at linear colliders, Phys. Rev. D 64 (2001) 115007 [hep-ph/0105090] [SPIRES].

    ADS  Google Scholar 

  40. [40]

    Y. Liao and C. Dehne, Some phenomenological consequences of the time-ordered perturbation theory of QED on noncommutative spacetime, Eur. Phys. J. C 29 (2003) 125 [hep-ph/0211425] [SPIRES].

    ADS  Article  Google Scholar 

  41. [41]

    J.-i. Kamoshita, Probing noncommutative space-time in the laboratory frame, Eur. Phys. J. C 52 (2007) 451 [hep-ph/0206223] [SPIRES].

    ADS  Article  Google Scholar 

  42. [42]

    M. Haghighat, N. Okada and A. Stern, Location and direction dependent effects in collider physics from noncommutativity, Phys. Rev. D 82 (2010) 016007 [arXiv:1006.1009] [SPIRES].

    ADS  Google Scholar 

  43. [43]

    ILC collaboration, J. Brau, (Ed.) et al., ILC reference design report volume 1 — executive summary, arXiv:0712.1950 [SPIRES].

  44. [44]

    ILC collaboration, G. Aarons et al., International linear collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [SPIRES].

  45. [45]

    A. Bichl et al., Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, JHEP 06 (2001) 013 [hep-th/0104097] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  46. [46]

    C.P. Martin, The gauge anomaly and the Seiberg-Witten map, Nucl. Phys. B 652 (2003) 72 [hep-th/0211164] [SPIRES].

    ADS  Article  Google Scholar 

  47. [47]

    C.P. Martin and C. Tamarit, The U(1) A anomaly in noncommutative SU(N) theories, Phys. Rev. D 72 (2005) 085008 [hep-th/0503139] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. [48]

    M. Burić, V. Radovanović and J. Trampetic, The one-loop renormalization of the gauge sector in the noncommutative standard model, JHEP 03 (2007) 030 [hep-th/0609073] [SPIRES].

    ADS  Google Scholar 

  49. [49]

    D. Latas, V. Radovanović and J. Trampetic, Non-commutative SU(N) gauge theories and asymptotic freedom, Phys. Rev. D 76 (2007) 085006 [hep-th/0703018] [SPIRES].

    ADS  Google Scholar 

  50. [50]

    M. Burić, D. Latas, V. Radovanović and J. Trampetic, The absence of the 4ψ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008) 045031 [arXiv:0711.0887] [SPIRES].

    ADS  Google Scholar 

  51. [51]

    C.P. Martin and C. Tamarit, Renormalisability of the matter determinants in noncommutative gauge theory in the enveloping-algebra formalism, Phys. Lett. B 658 (2008) 170 [arXiv:0706.4052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. [52]

    M.M. Ettefaghi, M. Haghighat and R. Mohammadi, Noncommutative QED + QCD and the β-function for QED, Phys. Rev. D 82 (2010) 105017 [SPIRES].

    ADS  Google Scholar 

  53. [53]

    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Chiral fermions in noncommutative electrodynamics: renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [SPIRES].

    ADS  Google Scholar 

  54. [54]

    R. Horvat, D. Kekez and J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011) 065013 [arXiv:1005.3209] [SPIRES].

    ADS  Google Scholar 

  55. [55]

    R. Horvat, D. Kekez, P. Schupp, J. Trampetic and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, arXiv:1103.3383 [SPIRES].

  56. [56]

    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [SPIRES].

    ADS  Article  Google Scholar 

  57. [57]

    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumit K. Garg.

Additional information

ArXiv ePrint: 1105.5203

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garg, S.K., Shreecharan, T., Das, P.K. et al. TeV scale implications of non commutative space time in laboratory frame with polarized beams. J. High Energ. Phys. 2011, 24 (2011). https://doi.org/10.1007/JHEP07(2011)024

Download citation

Keywords

  • Strings and branes phenomenology