TeV scale implications of non commutative space time in laboratory frame with polarized beams

  • Sumit K. Garg
  • T. Shreecharan
  • P. K. Das
  • N. G. Deshpande
  • G. Rajasekaran
Article

Abstract

We analyze e+e → γγ, eγ → eγ and γγ → e+e processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative (NC) parameter i.e. O2), while with polarized beams these corrections appear at first order (O(Θ)) in cross section. The corrections in Compton case can probe the magnetic component \( \left( {{{\overrightarrow \Theta }_B}} \right) \) while in Pair production and Pair annihilation probe the electric component \( \left( {{{\overrightarrow \Theta }_E}} \right) \) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider (ILC).

Keywords

Strings and branes phenomenology 

References

  1. [1]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [SPIRES].ADSMATHCrossRefGoogle Scholar
  3. [3]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    L. Álvarez-Gaumé and M.A. Vazquez-Mozo, General properties of noncommutative field theories, Nucl. Phys. B 668 (2003) 293 [hep-th/0305093] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    J. Jaeckel, V.V. Khoze and A. Ringwald, Telltale traces of U(1) fields in noncommutative standard model extensions, JHEP 02 (2006) 028 [hep-ph/0508075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S.A. Abel, J. Jaeckel, V.V. Khoze and A. Ringwald, Vacuum birefringence as a probe of Planck scale noncommutativity, JHEP 09 (2006) 074 [hep-ph/0607188] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    R. Horvat and J. Trampetic, Constraining noncommutative field theories with holography, JHEP 01 (2011) 112 [arXiv:1009.2933] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [SPIRES].ADSGoogle Scholar
  10. [10]
    B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153] [SPIRES].ADSGoogle Scholar
  11. [11]
    X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [SPIRES].ADSGoogle Scholar
  12. [12]
    W. Behr et al., The Z → γγ,gg decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Duplancic, P. Schupp and J. Trampetic, Comment on triple gauge boson interactions in the non-commutative electroweak sector, Eur. Phys. J. C 32 (2003) 141 [hep-ph/0309138] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098] [SPIRES].ADSGoogle Scholar
  15. [15]
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Strong interactions included, Eur. Phys. J. C 42 (2005) 499 [hep-ph/0503064] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    P.K. Das, N.G. Deshpande and G. Rajasekaran, Móller and Bhaba scattering in the noncommutative SM, Phys. Rev. D 77 (2008) 035010 [arXiv:0710.4608] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for noncommutative QED at high energy e + e colliders, hep-ph/0201275 [SPIRES].
  19. [19]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for non-commutative interactions at linear colliders, Phys. Rev. D 64 (2001) 075012 [hep-ph/0010354] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Noncommutativity and unitarity violation in gauge boson scattering, Phys. Rev. D 66 (2002) 036001 [hep-ph/0112003] [SPIRES].ADSGoogle Scholar
  21. [21]
    P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    M. Haghighat, M.M. Ettefaghi and M. Zeinali, Photon neutrino scattering in non-commutative space, Phys. Rev. D 73 (2006) 013007 [hep-ph/0511042] [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Mohammadi Najafabadi, Semi-leptonic decay of a polarized top quark in the noncommutative standard model, Phys. Rev. D 74 (2006) 025021 [hep-ph/0606017] [SPIRES].ADSGoogle Scholar
  24. [24]
    N. Mahajan, t → bW in noncommutative standard model, Phys. Rev. D 68 (2003) 095001 [hep-ph/0304235] [SPIRES].ADSGoogle Scholar
  25. [25]
    E.O. Iltan, The Z → ℓ+ and W → ν l l + decays in the noncommutative standard model, Phys. Rev. D 66 (2002) 034011 [hep-ph/0204332] [SPIRES].ADSGoogle Scholar
  26. [26]
    N.G. Deshpande and X.-G. He, Triple neutral gauge boson couplings in noncommutative standard model, Phys. Lett. B 533 (2002) 116 [hep-ph/0112320] [SPIRES].ADSGoogle Scholar
  27. [27]
    M.M. Najafabadi, Noncommutative standard model in top quark sector, Phys. Rev. D 77 (2008) 116011 [arXiv:0803.2340] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Trampetic, Renormalizability and phenomenology of theta-expanded noncommutative gauge field theory, Fortschr. Phys. 56 (2008) 521 [arXiv:0802.2030] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Nonzero Z → γ γ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007) 097701 [SPIRES].ADSGoogle Scholar
  30. [30]
    OPAL collaboration, G. Abbiendi et al., Test of non-commutative QED in the process e + e  → γγ at LEP, Phys. Lett. B 568 (2003) 181 [hep-ex/0303035] [SPIRES].ADSGoogle Scholar
  31. [31]
    B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity, Phys. Rev. D 72 (2005) 054004 [hep-ph/0503133] [SPIRES].ADSGoogle Scholar
  32. [32]
    B. Melic, K. Passek-Kumericki and J. Trampetic, K → πγ decay and space-time noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231] [SPIRES].ADSGoogle Scholar
  33. [33]
    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at O(θ 2), Phys. Rev. D 76 (2007) 105018 [arXiv:0707.3595] [SPIRES].ADSGoogle Scholar
  34. [34]
    A. Prakash, A. Mitra and P.K. Das, e + e  → μ + μ scattering in the Noncommutative standard model, Phys. Rev. D 82 (2010) 055020 [arXiv:1009.3554] [SPIRES].ADSGoogle Scholar
  35. [35]
    P.K. Das, A. Prakash and A. Mitra, Neutral Higgs boson pair production at the LC in the Noncommutative Standard Model, Phys. Rev. D 83 (2011) 056002 [arXiv:1009.3571] [SPIRES].ADSGoogle Scholar
  36. [36]
    W. Wang, F. Tian and Z.-M. Sheng, Higgsstrahlung and pair production in e + e collision in the noncommutative standard model, arXiv:1105.0252 [SPIRES].
  37. [37]
    A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [SPIRES].ADSGoogle Scholar
  38. [38]
    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at the ILC, ECONF C 0705302 (2007) TEV05 [Acta Phys. Polon. B 38 (2007) 3647] [arXiv:0709.2359] [SPIRES].Google Scholar
  39. [39]
    H. Grosse and Y. Liao, Pair production of neutral Higgs bosons through noncommutative QED interactions at linear colliders, Phys. Rev. D 64 (2001) 115007 [hep-ph/0105090] [SPIRES].ADSGoogle Scholar
  40. [40]
    Y. Liao and C. Dehne, Some phenomenological consequences of the time-ordered perturbation theory of QED on noncommutative spacetime, Eur. Phys. J. C 29 (2003) 125 [hep-ph/0211425] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    J.-i. Kamoshita, Probing noncommutative space-time in the laboratory frame, Eur. Phys. J. C 52 (2007) 451 [hep-ph/0206223] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    M. Haghighat, N. Okada and A. Stern, Location and direction dependent effects in collider physics from noncommutativity, Phys. Rev. D 82 (2010) 016007 [arXiv:1006.1009] [SPIRES].ADSGoogle Scholar
  43. [43]
    ILC collaboration, J. Brau, (Ed.) et al., ILC reference design report volume 1 — executive summary, arXiv:0712.1950 [SPIRES].
  44. [44]
    ILC collaboration, G. Aarons et al., International linear collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [SPIRES].
  45. [45]
    A. Bichl et al., Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, JHEP 06 (2001) 013 [hep-th/0104097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    C.P. Martin, The gauge anomaly and the Seiberg-Witten map, Nucl. Phys. B 652 (2003) 72 [hep-th/0211164] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    C.P. Martin and C. Tamarit, The U(1)A anomaly in noncommutative SU(N) theories, Phys. Rev. D 72 (2005) 085008 [hep-th/0503139] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    M. Burić, V. Radovanović and J. Trampetic, The one-loop renormalization of the gauge sector in the noncommutative standard model, JHEP 03 (2007) 030 [hep-th/0609073] [SPIRES].ADSGoogle Scholar
  49. [49]
    D. Latas, V. Radovanović and J. Trampetic, Non-commutative SU(N) gauge theories and asymptotic freedom, Phys. Rev. D 76 (2007) 085006 [hep-th/0703018] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, The absence of the 4ψ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008) 045031 [arXiv:0711.0887] [SPIRES].ADSGoogle Scholar
  51. [51]
    C.P. Martin and C. Tamarit, Renormalisability of the matter determinants in noncommutative gauge theory in the enveloping-algebra formalism, Phys. Lett. B 658 (2008) 170 [arXiv:0706.4052] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    M.M. Ettefaghi, M. Haghighat and R. Mohammadi, Noncommutative QED + QCD and the β-function for QED, Phys. Rev. D 82 (2010) 105017 [SPIRES].ADSGoogle Scholar
  53. [53]
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Chiral fermions in noncommutative electrodynamics: renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [SPIRES].ADSGoogle Scholar
  54. [54]
    R. Horvat, D. Kekez and J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011) 065013 [arXiv:1005.3209] [SPIRES].ADSGoogle Scholar
  55. [55]
    R. Horvat, D. Kekez, P. Schupp, J. Trampetic and J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory, arXiv:1103.3383 [SPIRES].
  56. [56]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Sumit K. Garg
    • 1
  • T. Shreecharan
    • 2
  • P. K. Das
    • 3
  • N. G. Deshpande
    • 4
  • G. Rajasekaran
    • 5
    • 6
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia
  3. 3.Department of PhysicsBirla Institute of Technology and Science-PilaniGoaIndia
  4. 4.Institute of Theoretical ScienceUniversity of OregonEugeneUSA
  5. 5.The Institute of Mathematical Sciences, C.I.T. CampusChennaiIndia
  6. 6.Chennai Mathematical InstituteSiruseriIndia

Personalised recommendations