Skip to main content
Log in

Holographic constraint and effective field theories with N-species

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Effective field theories that manifest UV/IR mode mixing in such a way as to be valid for arbitrarily large volumes, can be used for gravitational, non-black hole events to be accounted for. In formulating such theories with a large number of particle species N, we employ constraints from the muon g − 2, higher-dimensional operator corrections due to the required UV and IR cutoffs as well as the RG evolution in a conventional field-theoretical model in curved space. While in general our bounds on N do reflect N ≃ 1032, a bound motivated by the solution to the hierarchy problem in the alike theories and obtained by the fact that strong gravity has not been seen in the particle collisions, the bound from the muon g −2 turns out to be much stronger, N ≲ 1019. For systems on the verge of gravitational collapse, this bound on N is far too restrictive to allow populating a large gap in entropy between those systems and that of black holes of the same size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Frampton, S.D.H. Hsu, D. Reeb and T.W. Kephart, What is the entropy of the universe?, Class. Quant. Grav. 26 (2009) 145005 [arXiv:0801.1847] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Horvat, Effective field theory, large number of particle species and holography, Phys. Lett. B 674 (2009) 1 [arXiv:0812.2768] [SPIRES].

    ADS  Google Scholar 

  3. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].

  5. D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. C.-H. Chou and K.-W. Ng, Decaying superheavy dark matter and subgalactic structure of the universe, Phys. Lett. B 594 (2004) 1 [astro-ph/0306437] [SPIRES].

    ADS  Google Scholar 

  7. M. Li, A model of holographic dark energy, Phys. Lett. B 603 (2004) 1 [hep-th/0403127] [SPIRES].

    ADS  Google Scholar 

  8. R. Horvat, Holography and variable cosmological constant, Phys. Rev. D 70 (2004) 087301 [astro-ph/0404204] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. P.J. Steinhardt, Cosmological challenges for the 21st century, in Critical problems in physics, V.L. Fitch and Dr. R. Marlow eds., Princeton University Press, Princeton U.S.A. (1997).

    Google Scholar 

  10. SDSS collaboration, M. Tegmark et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [SPIRES].

    ADS  Google Scholar 

  11. G. Dvali, Black holes and large-N species solution to the hierarchy problem, arXiv:0706.2050 [SPIRES].

  12. G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev. D 77 (2008) 045027 [arXiv:0710.4344] [SPIRES].

    ADS  Google Scholar 

  13. G. Dvali and S.N. Solodukhin, Black hole entropy and gravity cutoff, arXiv:0806.3976 [SPIRES].

  14. G. Dvali and C. Gomez, Quantum information and gravity cutoff in theories with species, Phys. Lett. B 674 (2009) 303 [arXiv:0812.1940] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. G. Dvali and C. Gomez, Strong coupling holography, arXiv:0907.3237 [SPIRES].

  16. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  17. C. Cao and Y.-X. Chen, Large extra dimensions and holography, arXiv:0809.4075 [SPIRES].

  18. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  19. A. Babic, B. Guberina, R. Horvat and H. Stefančić, Renormalization-group running of the cosmological constant and its implication for the Higgs boson mass in the standard model, Phys. Rev. D 65 (2002) 085002 [hep-ph/0111207] [SPIRES].

    ADS  Google Scholar 

  20. B. Guberina, R. Horvat and H. Stefančić, Renormalization-group running of the cosmological constant and the fate of the universe, Phys. Rev. D 67 (2003) 083001 [hep-ph/0211184] [SPIRES].

    ADS  Google Scholar 

  21. I.L. Shapiro and J. Solà, Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology, JHEP 02 (2002) 006 [hep-th/0012227] [SPIRES].

    Article  ADS  Google Scholar 

  22. I.L. Shapiro and J. Solà, On the scaling behavior of the cosmological constant and the possible existence of new forces and new light degrees of freedom, Phys. Lett. B 475 (2000) 236 [hep-ph/9910462] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Horvat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvat, R. Holographic constraint and effective field theories with N-species. J. High Energ. Phys. 2010, 92 (2010). https://doi.org/10.1007/JHEP07(2010)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)092

Keywords

Navigation