Skip to main content
Log in

B-L cosmic strings in heterotic standard models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

E8 × E8 heterotic string and M-theory, when compactified on smooth Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken N = 1 supersymmetric theories with the exact matter spectrum of the MSSM, including three right-handed neutrinos and one Higgs-Higgs conjugate pair of supermultiplets. These vacua have the SU(3) C × SU(2) L × U(1) Y gauge group of the standard model augmented by an additional gauged U(1)BL. Their minimal content requires that the B-L symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. The soft supersymmetry breaking operators can induce radiative breaking of the B-L gauge symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is shown that U(1)BL cosmic strings occur in this context, potentially with both bosonic and fermionic superconductivity. We present a numerical analysis that demonstrates that boson condensates can, in principle, form for theories of this type. However, the weak Yukawa and gauge couplings of the right-handed sneutrino suggests that bosonic superconductivity will not occur in the simplest vacua in this context. The electroweak phase transition also disallows fermion superconductivity, although substantial bound state fermion currents can exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987) [SPIRES].

    Google Scholar 

  3. E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Lukas, B.A. Ovrut and D. Waldram, On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B 532 (1998) 43 [hep-th/9710208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Holomorphic vector bundles and non-perturbative vacua in M-theory, JHEP 06 (1999) 034 [hep-th/9901009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Donagi, B.A. Ovrut and D. Waldram, Moduli spaces of fivebranes on elliptic Calabi-Yau threefolds, JHEP 11 (1999) 030 [hep-th/9904054] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. L.B. Anderson, J . Gray, Y.-H. He and A. Lukas, Exploring positive monad bundles and a new heterotic standard model, JHEP 02 (2010) 054 [arXiv:0911.1569] [SPIRES].

    Article  Google Scholar 

  13. L. Girardello and M. Grisaru, Soft breaking of supersymmetry, Nucl. Phys. B 194 (1982) 65 [SPIRES].

    Article  ADS  Google Scholar 

  14. L.E. Ibáñez and G.G. Ross, Supersymmetric Higgs and radiative electroweak breaking, Comptes Rendus Physique 8 (2007) 1013 [hep-ph/0702046] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Lukas, B.A. Ovrut and D. Waldram, Five-branes and supersymmetry breaking in M-theory, JHEP 04 (1999) 009 [hep-th/9901017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Choi, H.B. Kim and C. Munoz, Four-dimensional effective supergravity and soft terms in M-theory, Phys. Rev. D 57 (1998) 7521 [hep-th/9711158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. H.P. Nilles, M. Olechowski and M. Yamaguchi, Supersymmetry breaking and soft terms in M-theory, Phys. Lett. B 415 (1997) 24 [hep-th/9707143] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric standard model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [SPIRES].

    Article  ADS  Google Scholar 

  19. G.R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].

    ADS  Google Scholar 

  20. G. Lazarides and Q. Shafi, R symmetry in MSSM and beyond with several consequences, Phys. Rev. D 58 (1998) 071702 [hep-ph/9803397] [SPIRES].

    ADS  Google Scholar 

  21. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [SPIRES].

    Article  ADS  Google Scholar 

  22. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  23. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 4 [hep-th/0505041] [SPIRES].

    MathSciNet  Google Scholar 

  25. R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z 3 × Z 3 Wilson lines, JHEP 12 (2004) 062 [hep-th/0410055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z 2 × Z 2 fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. R.Y. Donagi, J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, Visible branes with negative tension in heterotic M-theory, JHEP 11 (2001) 041 [hep-th/0105199] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Ambroso and B. Ovrut, The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP 10 (2009) 011 [arXiv:0904.4509] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Ambroso and B.A. Ovrut, The B-L/electroweak hierarchy in smooth heterotic compactifications, Int. J. Mod. Phys. A 25 (2010) 2631 [arXiv:0910.1129] [SPIRES].

    ADS  Google Scholar 

  32. M. Ambroso and B.A. Ovrut, The vacuum structure, mass spectra and B-L/electroweak hierarchy in heterotic compactifications, in preparation.

  33. A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 Zh. Eksp. Teor. Fiz. 32 (1957) 1442 [SPIRES].

    Google Scholar 

  34. H.B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61 (1973) 45 [SPIRES].

    Article  ADS  Google Scholar 

  35. A.E. Everett, Cosmic strings in unified gauge theories, Phys. Rev. D 24 (1981) 858 [SPIRES].

    ADS  Google Scholar 

  36. T.W.B. Kibble, Phase transitions in the early universe, Acta Phys. Polon. B 13 (1982) 723 [SPIRES].

    ADS  Google Scholar 

  37. D.I. Olive and N. Turok, Z 2 vortex strings in grand unified theories, Phys. Lett. B 117 (1982) 193 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. A. Vilenkin and Q. Shafi, Density uctuations from strings and galaxy formation, Phys. Rev. Lett. 51 (1983) 1716 [SPIRES].

    Article  ADS  Google Scholar 

  39. G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Phenomenology and cosmology with superstrings, Phys. Rev. Lett. 56 (1986) 432 [SPIRES].

    Article  ADS  Google Scholar 

  40. G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Superheavy superconducting cosmic strings from superstring models, Phys. Lett. B 183 (1987) 289 [SPIRES].

    ADS  Google Scholar 

  41. A. Stern and U.A. Yajnik, SO(10) vortices and the electroweak phase transition, Nucl. Phys. B 267 (1986) 158 [SPIRES].

    Article  ADS  Google Scholar 

  42. S.C. Davis, A.-C. Davis and M. Trodden, N = 1 supersymmetric cosmic strings, Phys. Lett. B 405 (1997) 257 [hep-ph/9702360] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. M. Trodden, Supersymmetric strings and fermionic zero modes, hep-ph/9710318 [SPIRES].

  44. R.H. Brandenberger, B. Carter, A.-C. Davis and M. Trodden, Cosmic vortons and particle physics constraints, Phys. Rev. D 54 (1996) 6059 [hep-ph/9605382] [SPIRES].

    ADS  Google Scholar 

  45. J.E. Kiskis, Fermions in a pseudoparticle field, Phys. Rev. D 15 (1977) 2329 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. R. Jackiw and P. Rossi, Zero modes of the vortex-fermion system, Nucl. Phys. B 190 (1981) 681 [SPIRES].

    Article  ADS  Google Scholar 

  47. E. Witten, Superconducting strings, Nucl. Phys. B 249 (1985) 557 [SPIRES].

    Article  ADS  Google Scholar 

  48. C.T. Hill and L.M. Widrow, Superconducting cosmic strings with massive fermions, Phys. Lett. B 189 (1987) 17 [SPIRES].

    ADS  Google Scholar 

  49. M. Hindmarsh, Superconducting cosmic strings with coupled zero modes, Phys. Lett. B 200 (1988) 429 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. S.C. Davis, A.-C. Davis and W.B. Perkins, Cosmic string zero modes and multiple phase transitions, Phys. Lett. B 408 (1997) 81 [hep-ph/9705464] [SPIRES].

    ADS  Google Scholar 

  51. M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. R.L. Davis, Fermion masses on the vortex world sheet, Phys. Rev. D 36 (1987) 2267 [SPIRES].

    ADS  Google Scholar 

  53. E.J. Weinberg, Index calculations for the fermion-vortex system, Phys. Rev. D 24 (1981) 2669 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. A. Vilenkin and E. Shellard, Cosmic strings and other topological defects, Cambridge monographs on mathematical physics, Cambridge University Press, Cambridge U.K. (2000) [SPIRES].

    Google Scholar 

  55. E. Chudnovsky, G. Field and D. Spergel, Superconducting cosmic strings, Phys. Rev. D 34 (1986) 944 [SPIRES].

    ADS  Google Scholar 

  56. A. Vilenkin and T. VachasPati, Electromagnetic radiation from superconducting cosmic strings, Phys. Rev. Lett. 58 (1987) 1041 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. F. Ferrer and T. VachasPati, Light superconducting strings in the galaxy, Int. J. Mod. Phys. D 16 (2008) 2399 [astro-ph/0608168] [SPIRES].

    ADS  Google Scholar 

  58. C.J. Hogan, Gravitational waves from light cosmic strings: backgrounds and bursts with large loops, Phys. Rev. D 74 (2006) 043526 [astro-ph/0605567] [SPIRES].

    ADS  Google Scholar 

  59. K.J. Mack, D.H. Wesley and L.J. King, Observing cosmic string loops with gravitational lensing surveys, Phys. Rev. D 76 (2007) 123515 [astro-ph/0702648] [SPIRES].

    ADS  Google Scholar 

  60. D. Battefeld, T. Battefeld, D.H. Wesley and M. Wyman, Magnetogenesis from cosmic string loops, JCAP 02 (2008) 001 [arXiv:0708.2901] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaz Brelidze.

Additional information

ArXiv ePrint: 1003.0234

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brelidze, T., Ovrut, B.A. B-L cosmic strings in heterotic standard models. J. High Energ. Phys. 2010, 77 (2010). https://doi.org/10.1007/JHEP07(2010)077

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)077

Keywords

Navigation