Skip to main content
Log in

Pseudomoduli dark matter and quiver gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate supersymmetric models for dark matter which is represented by pseudomoduli in weakly coupled hidden sectors. We propose a scheme to add a dark matter sector to quiver gauge theories with metastable supersymmetry breaking. We discuss the embedding of such scheme in string theory and we describe the dark matter sector in terms of D7 flavour branes. We explore the phenomenology in various regions of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Trodden and S.M. Carroll, TASI lectures: Introduction to cosmology, astro-ph/0401547 [SPIRES].

  3. V. Rubakov, Introduction to cosmology, PoS(RTN2005)003 [SPIRES].

  4. D. Hooper, TASI 2008 Lectures on dark matter, arXiv:0901.4090 [SPIRES].

  5. M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys. B 310 (1988) 693 [SPIRES].

    Article  ADS  Google Scholar 

  6. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].

    Article  ADS  Google Scholar 

  7. B.W. Lee and S. Weinberg, Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [SPIRES].

    Article  ADS  Google Scholar 

  8. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  9. M. Dine and W. Fischler, A Supersymmetric GUT, Nucl. Phys. B 204 (1982) 346 [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Dine and W. Fischler, A phenomenological model of particle physics based on supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].

    ADS  Google Scholar 

  11. G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

    Article  ADS  Google Scholar 

  12. P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino, Phys. Lett. B 70 (1977) 461 [SPIRES].

    ADS  Google Scholar 

  13. H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [SPIRES].

    Article  ADS  Google Scholar 

  14. M. Endo and F. Takahashi, Dark matter in gauge mediated supersymmetry breaking using metastable vacua, arXiv:0710.1561 [SPIRES].

  15. J .L. Feng and J . Kumar, The Wimpless miracle: Dark-Matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [SPIRES].

    Article  ADS  Google Scholar 

  16. J. Mardon, Y. Nomura and J. Thaler, Cosmic signals from the hidden sector, Phys. Rev. D 80 (2009) 035013 [arXiv:0905.3749] [SPIRES].

    ADS  Google Scholar 

  17. J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [SPIRES].

    Article  Google Scholar 

  18. A. Ferrantelli and J. McDonald, Cosmological evolution of a gauge-mediated supersymmetry-breaking sector with metastable vacuum and gravitino dark matter at low reheating temperatures, JCAP 02 (2010) 003 [arXiv:0909.5108] [SPIRES].

    ADS  Google Scholar 

  19. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].

    ADS  Google Scholar 

  20. E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCA P 02 (2009) 026 [arXiv:0812.0308] [SPIRES].

    ADS  Google Scholar 

  21. S. Dimopoulos, G.F. Giudice and A. Pomarol, Dark matter in theories of gauge-mediated supersymmetry breaking, Phys. Lett. B 389 (1996) 37 [hep-ph/9607225] [SPIRES].

  22. D. Shih, Pseudomoduli dark matter, JHEP 09 (2009) 046 [arXiv:0906.3346] [SPIRES].

    Article  ADS  Google Scholar 

  23. B. Keren-Zur, L. Mazzucato and Y. Oz, Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors, JHEP 09 (2009) 041 [arXiv:0906.5586] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. R. Kitano, H. Ooguri and Y. Ookouchi, Direct mediation of meta-stable supersymmetry breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [SPIRES].

    ADS  Google Scholar 

  28. V. Balasubramanian, P. Berglund and I. Garcia-Etxebarria, Toric lego: a method for modular model building, JHEP 01 (2010) 076 [arXiv:0910.3616] [SPIRES].

    Article  Google Scholar 

  29. T. Kawano, H. Ooguri and Y. Ookouchi, Gauge mediation in string theory, Phys. Lett. B 652 (2007) 40 [arXiv:0704.1085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. A. Amariti, L. Girardello and A. Mariotti, Meta-stable A n quiver gauge theories, JHEP 10 (2007) 017 [arXiv:0706.3151] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. O. Aharony, S. Kachru and E. Silverstein, Simple stringy dynamical SUSY breaking, Phys. Rev. D 76 (2007) 126009 [arXiv:0708.0493] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  33. S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  35. N. Arkani-Hamed and N. Weiner, LHC signals for a superUnified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  36. A. Amariti, L. Girardello and A. Mariotti, Non-supersymmetric meta-stable vacua in SU(N) SQCD with adjoint matter, JHEP 12 (2006) 058 [hep-th/0608063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. On meta-stable SQCD with adjoint matter and gauge mediation, Fortsch. Phys.55 (2007) 627 [hep-th/0701121] [SPIRES].

  38. C. Csáki, Y. Shirman and J. Terning, A simple model of low-scale direct gauge mediation, JHEP 05 (2007) 099 [hep-ph/0612241] [SPIRES].

    Article  ADS  Google Scholar 

  39. S. Abel, C. Durnford, J. Jaeckel and V.V. Khoze, Dynamical breaking of U(1) R and supersymmetry in a metastable vacuum, Phys. Lett. B 661 (2008) 201 [arXiv:0707.2958] [SPIRES].

    ADS  Google Scholar 

  40. K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R -symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Shih, Spontaneous R -symmetry breaking in O’Raifeartaigh models, JHEP 02 (2008) 091 [hep-th/0703196] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Giveon and D. Kutasov, Stable and metastable vacua in SQCD, Nucl. Phys. B 796 (2008) 25 [arXiv:0710.0894] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Haba and N. Maru, A simple model of direct gauge mediation of metastable supersymmetry breaking, Phys. Rev. D 76 (2007) 115019 [arXiv:0709.2945] [SPIRES].

    ADS  Google Scholar 

  44. A. Giveon, A. Katz, Z. Komargodski and D. Shih, Dynamical SUSY and R -symmetry breaking in SQCD with massive and massless flavors, JHEP 10 (2008) 092 [arXiv:0808.2901] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [SPIRES].

    Article  ADS  Google Scholar 

  46. B.K. Zur, L. Mazzucato and Y. Oz, Direct mediation and a visible metastable supersymmetry breaking sector, JHEP 10 (2008) 099 [arXiv:0807.4543] [SPIRES].

    Article  Google Scholar 

  47. D. Koschade, M. McGarrie and S. Thomas, Direct mediation and metastable supersymmetry breaking for SO(10), JHEP 02 (2010) 100 [arXiv:0909.0233] [SPIRES].

    Article  Google Scholar 

  48. D.V. Volkov and V.A. Soroka, Higgs effect for Goldstone particles with spin 1/2, JETP Lett. 18 (1973) 312 [Pisma Zh. Eksp. Teor. Fiz. 18 (1973) 529] [SPIRES].

    ADS  Google Scholar 

  49. S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977) 1433 [SPIRES].

    Article  ADS  Google Scholar 

  50. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Spontaneous symmetry breaking and higgs effect in supergravity without cosmological constant, Nucl. Phys. B 147 (1979) 105 [SPIRES].

  51. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and superHiggs effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].

    Article  ADS  Google Scholar 

  52. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].

    ADS  Google Scholar 

  53. R. Argurio, M. Bertolini, S. Franco and S. Kachru, Metastable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Buican, D. Malyshev and H. Verlinde, On the geometry of metastable supersymmetry breaking, JHEP 06 (2008) 108 [arXiv:0710.5519] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. R. Tatar and B. Wetenhall, Metastable vacua and complex deformations, Phys. Rev. D 76 (2007) 126011 [arXiv:0707.2712] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. A. Amariti, D. Forcella, L. Girardello and A. Mariotti, Metastable vacua and geometric deformations, JHEP 12 (2008) 079 [arXiv:0803.0514] [SPIRES].

    Article  MathSciNet  Google Scholar 

  57. E. Halyo, Metastable supersymmetry breaking vacua on abelian brane models, arXiv:0906.2377 [SPIRES].

  58. S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. I. Garcia-Etxebarria, F. Saad and A.M. Uranga, Supersymmetry breaking metastable vacua in runaway quiver gauge theories, JHEP 05 (2007) 047 [arXiv:0704.0166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 3 [hep-th/0511287] [SPIRES].

    MathSciNet  Google Scholar 

  62. A. Giveon, A. Katz and Z. Komargodski, On SQCD with massive and massless flavors, JHEP 06 (2008) 003 [arXiv:0804.1805] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mariotti.

Additional information

Postdoctoral researcher of FWO-Vlaanderen. (Alberto Mariotti)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amariti, A., Girardello, L. & Mariotti, A. Pseudomoduli dark matter and quiver gauge theories. J. High Energ. Phys. 2010, 72 (2010). https://doi.org/10.1007/JHEP07(2010)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)072

Keywords

Navigation