Skip to main content
Log in

MSSM dark matter measurements at the LHC without squarks and sleptons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine the case of neutralino dark matter in the focus point region of the MSSM, in which the scalar sparticles are too heavy to be produced at the LHC. Whilst it has been previously asserted that the LHC alone would fail to constrain the properties of the lightest neutralino for such a scenario, we find that one can obtain good predictions of astrophysical quantities such as the relic density, annihilation cross-section and direct search cross-sections by using the shape of the dilepton invariant mass spectrum to constrain neutralino mixing. We demonstrate our technique using a Bayesian analysis of the 24 parameter MSSM model space, and in the process introduce a novel way of improving the LHC results even without assumptions on which new sparticles are responsible for the kinematic features in the dilepton invariant mass distribution. Finally, we consider the interplay between direct search experiments and the LHC, and find that, even with a realistic estimate of the relevant astrophysical uncertainties, one could also combine current direct search exclusion limits with LHC data to constrain neutralino mixing and improve the predicition of other astrophysical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  2. E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].

    ADS  Google Scholar 

  3. M.M. Nojiri, G. Polesello and D.R. Tovey, Constraining dark matter in the MSSM at the LHC, JHEP 03 (2006) 063 [hep-ph/0512204] [SPIRES].

    Article  ADS  Google Scholar 

  4. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [SPIRES].

    ADS  Google Scholar 

  5. ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [SPIRES].

    Google Scholar 

  6. CMS collaboration, R. Adolphi et al., The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [SPIRES].

    Google Scholar 

  7. F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, arXiv:0809.3437 [SPIRES].

  8. H.P. Nilles, Dynamically broken supergravity and the hierarchy problem, Phys. Lett. B 115 (1982) 193 [SPIRES].

    ADS  Google Scholar 

  9. H. Baer, A. Mustafayev, E.-K. Park and X. Tata, Collider signals and neutralino dark matter detection in relic-density-consistent models without universality, JHEP 05 (2008) 058 [arXiv:0802.3384] [SPIRES].

    Article  ADS  Google Scholar 

  10. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [SPIRES].

    ADS  Google Scholar 

  11. E. Moulin et al., Complementarity of gamma-ray and LHC searches for neutralino dark matter in the focus point region, Phys. Rev. D 77 (2008) 055014 [arXiv:0712.3151] [SPIRES].

    ADS  Google Scholar 

  12. B.C. Allanach and D. Hooper, Panglossian prospects for detecting neutralino dark matter in light of natural priors, JHEP 10 (2008) 071 [arXiv:0806.1923] [SPIRES].

    Article  ADS  Google Scholar 

  13. H. Baer, F.E. Paige, S. D. Protopescu and X. Tata, ISA JET 7.69: a Monte Carlo event generator for pp, \( \bar{p}p \) , and e + e reactions, hep-ph/0312045 [SPIRES].

  14. F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, arXiv:0704.3704 [SPIRES].

  15. J. Skilling, Nested sampling, A IP Conf. Proc. 735 (2004) 395.

    MathSciNet  ADS  Google Scholar 

  16. M. Bridges, F. Feroz, M.P. Hobson and A.N. Lasenby, Bayesian optimal reconstruction of the primordial power spectrum, arXiv:0812.3541 [SPIRES].

  17. S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz and M.P. Hobson, Selecting a model of supersymmetry breaking mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [SPIRES].

    ADS  Google Scholar 

  18. F. Feroz et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The Impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].

    Article  ADS  Google Scholar 

  20. A.R. Raklev and M.J. White, Constraining the MSSM with dark matter indirect detection data, arXiv:0911.1986 [SPIRES].

  21. F. Feroz, J.R. Gair, M.P. Hobson and E.K. Porter, Use of the MULTINEST algorithm for gravitational wave data analysis, Class. Quant. Grav. 26 (2009) 215003.

    Article  MathSciNet  ADS  Google Scholar 

  22. Z. Kang, N. Kersting, S. Kraml, A.R. Raklev and M.J. White, Neutralino reconstruction at the LHC from decay-frame kinematics, arXiv:0908.1550 [SPIRES].

  23. U. De Sanctis, T. Lari, S. Montesano and C. Troncon, Perspectives for the detection and measurement of supersymmetry in the focus point region of mSUGRA models with the ATLAS detector at LHC, Eur. Phys. J. C 52 (2007) 743 [arXiv:0704.2515] [SPIRES].

    Article  ADS  Google Scholar 

  24. P. Gondolo et al., DarkSUSY : computing supersymmetric dark matter properties numerically, JCA P 07 (2004) 008 [astro-ph/0406204] [SPIRES].

  25. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [SPIRES].

    ADS  Google Scholar 

  27. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  28. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].

    Article  ADS  Google Scholar 

  29. C.G. Lester, M.A. Parker and M.J. White, 2, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables, JHEP 01 (2006) 080 [hep-ph/0508143] [SPIRES].

    Article  ADS  Google Scholar 

  30. The CDMS-II collaboration, Z. Ahmed et al., Results from the Final Exposure of the CDMS II Experiment, arXiv:0912.3592 [SPIRES].

  31. G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri and R. Trotta, Identification of Dark Matter particles with LHC and direct detection data, arXiv:1005.4280 [SPIRES].

  32. C. McCabe, The astrophysical uncertainties of dark matter direct detection experiments, arXiv:1005.0579 [SPIRES].

  33. J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [SPIRES].

    ADS  Google Scholar 

  34. F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri and R. Trotta, Are BR (bsγ) and (g − 2)muon consistent within the constrained MSSM?, arXiv:0903.2487 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. White.

Additional information

ArXiv ePrint: 1002.1922

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, M.J., Feroz, F. MSSM dark matter measurements at the LHC without squarks and sleptons. J. High Energ. Phys. 2010, 64 (2010). https://doi.org/10.1007/JHEP07(2010)064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)064

Keywords

Navigation