Skip to main content
Log in

Holographic Roberge-Weiss transitions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate \( \mathcal{N} = 4 \) SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between \( {\mathbb{Z}_N} \) symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/ unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in μ 2 when μ 2 ≈ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J .M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. S.S. Gubser, Thermodynamics of spinning D3-branes, Nucl. Phys. B 551 (1999) 667 [hep-th/9810225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. K. Behrndt, M. Cvetič and W.A. Sabra, Non-extreme black holes of five dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [SPIRES].

    Article  ADS  Google Scholar 

  6. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [SPIRES].

    Article  ADS  Google Scholar 

  8. B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  10. D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with R-symmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Yamada, Metastability of R-charged black holes, Class. Quant. Grav. 24 (2007) 3347 [hep-th/0701254] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  12. T.J. Hollowood, S.P. Kumar, A. Naqvi and P. Wild, N = 4 SYM on S 3 with near critical chemical potentials, JHEP 08 (2008) 046 [arXiv:0803.2822] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT ’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  16. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. K. Ghoroku, T. Sakaguchi, N. Uekusa and M. Yahiro, Flavor quark at high temperature from a holographic model, Phys. Rev. D 71 (2005) 106002 [hep-th/0502088] [SPIRES].

    ADS  Google Scholar 

  19. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [SPIRES].

    ADS  Google Scholar 

  21. A. Karch and A. O’Bannon, Chiral transition of N = 4 super Yang-Mills with flavor on a 3-sphere, Phys. Rev. D 74 (2006) 085033 [hep-th/0605120] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. K. Ghoroku, M. Ishihara and A. Nakamura, D3/D7 holographic gauge theory and chemical potential, Phys. Rev. D 76 (2007) 124006 [arXiv:0708.3706] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Nakamura, Y. Seo, S.-J. Sin and K.P. Yogendran, Baryon-charge chemical potential in AdS/CFT, Prog. Theor. Phys. 120 (2008) 51 [arXiv:0708.2818] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  26. A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. O’Bannon, Holographic thermodynamics and transport of flavor fields, arXiv:0808.1115 [SPIRES].

  33. C. DeTar and U.M. Heller, QCD thermodynamics from the lattice, Eur. Phys. J. A 41 (2009) 405 [arXiv:0905.2949] [SPIRES].

    ADS  Google Scholar 

  34. P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [SPIRES].

  35. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [SPIRES].

    Article  ADS  Google Scholar 

  36. P. de Forcrand and O. Philipsen, The QCD phase diagram for three degenerate flavors and small baryon density, Nucl. Phys. B 673 (2003) 170 [hep-lat/0307020] [SPIRES].

    Article  ADS  Google Scholar 

  37. P. de Forcrand and O. Philipsen, The chiral critical line of N f = 2+1 QCD at zero and nonzero baryon density, JHEP 01 (2007) 077 [hep-lat/0607017] [SPIRES].

    Article  Google Scholar 

  38. P. de Forcrand and O. P hilipsen, Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential, arXiv:1004.3144 [SPIRES].

  39. M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [SPIRES].

    ADS  Google Scholar 

  40. M. D’Elia and M.P. Lombardo, QCD thermodynamics from an imaginary mu(B): Results on the four flavor lattice model, Phys. Rev. D 70 (2004) 074509 [hep-lat/0406012] [SPIRES].

    ADS  Google Scholar 

  41. M. D’Elia, F. Di Renzo and M.P. Lombardo, The strongly interacting Quark Gluon Plasma and the critical behaviour of QCD at imaginary chemical potential, Phys. Rev. D 76 (2007) 114509 [arXiv:0705.3814] [SPIRES].

    ADS  Google Scholar 

  42. M. D’Elia and F. Sanfilippo, Thermodynamics of two flavor QCD from imaginary chemical potentials, Phys. Rev. D 80 (2009) 014502 [arXiv:0904.1400] [SPIRES].

    ADS  Google Scholar 

  43. M. D’Elia and F. Sanfilippo, The order of the Roberge-Weiss endpoint (finite size transition) in QCD, Phys. Rev. D 80 (2009) 111501 [arXiv:0909.0254] [SPIRES].

    ADS  Google Scholar 

  44. P. Cea, L. Cosmai, M. D’Elia and A. Papa, T he phase diagram of QCD with four degenerate quarks, arXiv:1004.0184 [SPIRES].

  45. A. Roberge and N. Weiss, Gauge theories with imaginary chemical potential and the phases of QCD, Nucl. Phys. B 275 (1986) 734 [SPIRES].

    Article  ADS  Google Scholar 

  46. J. Braun, L.M. Haas, F. Marhauser and J.M. Pawlowski, On the relation of quark confinement and chiral symmetry breaking, arXiv:0908.0008 [SPIRES].

  47. M. Bluhm and B. Kampfer, Quasiparticle model of quark-gluon plasma at imaginary chemical potential, Phys. Rev. D 77 (2008) 034004 [arXiv:0711.0590] [SPIRES].

    ADS  Google Scholar 

  48. Y. Sakai, K. Kashiwa, H. Kouno and M. Yahiro, Phase diagram in the imaginary chemical potential region and extended Z3 symmetry, Phys. Rev. D 78 (2008) 036001 [arXiv:0803.1902] [SPIRES].

    Article  ADS  Google Scholar 

  49. K. Kashiwa, M. Matsuzaki, H. Kouno, Y. Sakai and M. Yahiro, Meson mass at real and imaginary chemical potentials, Phys. Rev. D 79 (2009) 076008 [arXiv:0812.4747] [SPIRES].

    ADS  Google Scholar 

  50. H. Kouno, Y. Sakai, K. Kashiwa and M. Yahiro, Roberge-Weiss phase transition and its endpoint, J. Phys. G 36 (2009) 115010 [arXiv:0904.0925] [SPIRES].

    ADS  Google Scholar 

  51. N. Weiss, The effective potential for the order parameter of gauge theories at finite temperature, Phys. Rev. D 24 (1981) 475 [SPIRES].

    ADS  Google Scholar 

  52. N. Weiss, The Wilson line infinite temperature gauge theories, Phys. Rev. D 25 (1982) 2667 [SPIRES].

    ADS  Google Scholar 

  53. C. Fefferman and C. Robin Graham, Conformal invariants, in Elie Cartan et les Mathématiques d’aurjourd’hui, Asterique 95 (1985).

  54. A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT , JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11 (1998) 018 [hep-th/9807205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. H.-U. Yee, Fate of Z(N) domain wall in hot holographic QCD, JHEP 04 (2009) 029 [arXiv:0901.0705] [SPIRES].

    Article  ADS  Google Scholar 

  59. R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031 [hep-th/0612169] [SPIRES].

    Article  ADS  Google Scholar 

  61. T. Faulkner and H. Liu, Condensed matter physics of a strongly coupled gauge theory with quarks: some novel features of the phase diagram, arXiv:0812.4278 [SPIRES].

  62. T. Faulkner and H. Liu, Meson widths from string worldsheet instantons, Phys. Lett. B 673 (2009) 161 [arXiv:0807.0063] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. P. Benincasa, Universality of holographic phase transitions and holographic quantum liquids, arXiv:0911.0075 [SPIRES].

  64. T. Hollowood, S.P. Kumar and A. Naqvi, Instabilities of the small black hole: a view from N = 4 SYM, JHEP 01 (2007) 001 [hep-th/0607111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prem Kumar.

Additional information

ArXiv ePrint: 1005.2947

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., Kumar, S.P. & Rafferty, J. Holographic Roberge-Weiss transitions. J. High Energ. Phys. 2010, 56 (2010). https://doi.org/10.1007/JHEP07(2010)056

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)056

Keywords

Navigation