Skip to main content

Non-Riemannian geometry of M-theory

A preprint version of the article is available at arXiv.

Abstract

We construct a background for M-theory that is moduli free. This background is then shown to be related to a topological phase of the E8(8) exceptional field theory (ExFT). The key ingredient in the construction is the embedding of non-Riemannian geometry in ExFT. This allows one to describe non-relativistic geometries, such as Newton-Cartan or Gomis-Ooguri-type limits, using the ExFT framework originally developed to describe maximal supergravity. This generalises previous work by Morand and Park in the context of double field theory.

References

  1. [1]

    C. Hull and B. Zwiebach, Double Field Theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    C. Hillmann, Generalized E(7(7)) coset dynamics and D = 11 supergravity, JHEP03 (2009) 135 [arXiv:0901.1581] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

  4. [4]

    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP01 (2012) 012 [arXiv:1110.3930] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6)covariant Form of M-theory and Type IIB, Phys. Rev.D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev.D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  9. [9]

    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  10. [10]

    M.J. Duff, Duality Rotations in String Theory, Nucl. Phys.B 335 (1990) 610 [INSPIRE].

  11. [11]

    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett.B 242 (1990) 163 [INSPIRE].

  12. [12]

    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

  13. [13]

    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev.D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

  14. [14]

    P.C. West, E 11and M-theory, Class. Quant. Grav.18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. [15]

    P.C. West, E 11, SL(32) and central charges, Phys. Lett.B 575 (2003) 333 [hep-th/0307098] [INSPIRE].

  16. [16]

    M. Gualtieri, Generalized complex geometry, math/0401221.

  17. [17]

    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser.54 (2003) 281 [math/0209099].

  18. [18]

    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev.D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. [20]

    O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP04 (2015) 050 [arXiv:1501.01600] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP06 (2015) 088 [arXiv:1504.01523] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    E.T. Musaev, Exceptional field theory: SL(5), JHEP02 (2016) 012 [arXiv:1512.02163] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+exceptional field theory, Class. Quant. Grav.33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. [24]

    G. Bossard, F. Ciceri, G. Inverso, A. Kleinschmidt and H. Samtleben, E 9exceptional field theory. Part I. The potential, JHEP03 (2019) 089 [arXiv:1811.04088] [INSPIRE].

  25. [25]

    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP01 (2014) 172 [arXiv:1311.5109] [INSPIRE].

  26. [26]

    E. Plauschinn, Non-geometric backgrounds in string theory, Phys. Rept.798 (2019) 1 [arXiv:1811.11203] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marqués and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys.60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    O. Hohm and S.K. Kwak, Massive Type II in Double Field Theory, JHEP11 (2011) 086 [arXiv:1108.4937] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

  31. [31]

    Y. Sakatani, S. Uehara and K. Yoshida, Generalized gravity from modified DFT, JHEP04 (2017) 123 [arXiv:1611.05856] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    A. Baguet, M. Magro and H. Samtleben, Generalized IIB supergravity from exceptional field theory, JHEP03 (2017) 100 [arXiv:1612.07210] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept.318 (1999) 113 [hep-th/9809039] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  34. [34]

    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept.532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

  35. [35]

    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP03 (2015) 144 [arXiv:1412.0635] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  36. [36]

    I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in Exceptional Field Theory: the SL(5) duality group, JHEP08 (2018) 021 [arXiv:1710.09740] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    J.J. Fernández-Melgarejo, T. Kimura and Y. Sakatani, Weaving the Exotic Web, JHEP09 (2018) 072 [arXiv:1805.12117] [INSPIRE].

  38. [38]

    D.S. Berman, E.T. Musaev and R. Otsuki, Exotic Branes in Exceptional Field Theory: E 7(7)and Beyond, JHEP12 (2018) 053 [arXiv:1806.00430] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys.60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (Première partie), Annales Sci. Ecole Norm. Sup.40 (1923) 325.

    MathSciNet  MATH  Article  Google Scholar 

  42. [42]

    E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (Première partie) (Suite), Annales Sci. Ecole Norm. Sup.41 (1924) 1.

    MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].

  45. [45]

    U.H. Danielsson, A. Guijosa and M. Kruczenski, Newtonian gravitons and D-brane collective coordinates in wound string theory, JHEP03 (2001) 041 [hep-th/0012183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys.B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    S.M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park, Dynamics of Perturbations in Double Field Theory & Non-Relativistic String Theory, JHEP12 (2015) 144 [arXiv:1508.01121] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [Erratum ibid.C 78 (2018) 901] [arXiv:1707.03713] [INSPIRE].

  49. [49]

    K. Cho, K. Morand and J.-H. Park, Kaluza-Klein reduction on a maximally non-Riemannian space is moduli-free, Phys. Lett.B 793 (2019) 65 [arXiv:1808.10605] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    J.-H. Park and Y. Suh, U-gravity: SL(N), JHEP06 (2014) 102 [arXiv:1402.5027] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. [52]

    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].

  53. [53]

    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP11 (2016) 036 [arXiv:1606.05636] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    E. Casali and P. Tourkine, Windings of twisted strings, Phys. Rev.D 97 (2018) 061902 [arXiv:1710.01241] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    K. Lee, S.-J. Rey and J.A. Rosabal, A string theory which isn’t about strings, JHEP11 (2017) 172 [arXiv:1708.05707] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  56. [56]

    K. Lee and J.A. Rosabal, A Note on Circle Compactification of Tensile Ambitwistor String, Nucl. Phys.B 933 (2018) 482 [arXiv:1712.05874] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors and anomalies, hep-th/0511008 [INSPIRE].

  58. [58]

    M.J. Duff, J.X. Lu, R. Percacci, C.N. Pope, H. Samtleben and E. Sezgin, Membrane Duality Revisited, Nucl. Phys.B 901 (2015) 1 [arXiv:1509.02915] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    A.S. Arvanitakis and C.D.A. Blair, Unifying Type-II Strings by Exceptional Groups, Phys. Rev. Lett.120 (2018) 211601 [arXiv:1712.07115] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    A.S. Arvanitakis and C.D.A. Blair, The Exceptional σ-model, JHEP04 (2018) 064 [arXiv:1802.00442] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    Y. Sakatani and S. Uehara, Exceptional M-brane σ-models and η-symbols, PTEP2018 (2018) 033B05 [arXiv:1712.10316] [INSPIRE].

  62. [62]

    M.J. Duff and J.X. Lu, Duality Rotations in Membrane Theory, Nucl. Phys.B 347 (1990) 394 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    O. Hohm and H. Samtleben, Leibniz-Chern-Simons Theory and Phases of Exceptional Field Theory, Commun. Math. Phys. (2019) 1 [arXiv:1805.03220] [INSPIRE].

  64. [64]

    O. Hohm and H. Samtleben, Reviving 3D \( \mathcal{N} \)= 8 superconformal field theories, JHEP04 (2019) 047 [arXiv:1810.12311] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  65. [65]

    A.A. Tseytlin, On the First Order Formalism in Quantum Gravity, J. Phys. A 15 (1982) L105 [INSPIRE].

  66. [66]

    E. Witten, Topological σ-models, Commun. Math. Phys.118 (1988) 411 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    G.T. Horowitz, Exactly Soluble Diffeomorphism Invariant Theories, Commun. Math. Phys.125 (1989) 417 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    C.M. Hull and B. Julia, Duality and moduli spaces for timelike reductions, Nucl. Phys.B 534 (1998) 250 [hep-th/9803239] [INSPIRE].

  69. [69]

    J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP06 (2014) 006 [arXiv:1403.7198] [INSPIRE].

  70. [70]

    O. Hohm and H. Samtleben, The dual graviton in duality covariant theories, Fortsch. Phys.67 (2019) 1900021 [arXiv:1807.07150] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. [71]

    A. Baguet and H. Samtleben, E 8(8)Exceptional Field Theory: Geometry, Fermions and Supersymmetry, JHEP09 (2016) 168 [arXiv:1607.03119] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. [72]

    D.L. Welch, Timelike duality, Phys. Rev.D 50 (1994) 6404 [hep-th/9405070] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. [73]

    J.-H. Park, S.-J. Rey, W. Rim and Y. Sakatani, O(D, D) covariant Noether currents and global charges in double field theory, JHEP11 (2015) 131 [arXiv:1507.07545] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. [74]

    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, JHEP02 (2018) 050 [arXiv:1603.05665] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP07 (1998) 021 [hep-th/9806146] [INSPIRE].

  76. [76]

    C.M. Hull, Duality and the signature of space-time, JHEP11 (1998) 017 [hep-th/9807127] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. [77]

    O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

  78. [78]

    C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP11 (2016) 042 [arXiv:1608.06818] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  79. [79]

    T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  80. [80]

    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP11 (2018) 190 [arXiv:1810.05560] [INSPIRE].

  81. [81]

    E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP11 (2018) 133 [arXiv:1806.06071] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  82. [82]

    C.D.A. Blair, E. Malek and D.C. Thompson, O-folds: Orientifolds and Orbifolds in Exceptional Field Theory, JHEP09 (2018) 157 [arXiv:1805.04524] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  83. [83]

    C.D.A. Blair, Particle actions and brane tensions from double and exceptional geometry, JHEP10 (2017) 004 [arXiv:1707.07572] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. [84]

    E. Malek, Timelike U-dualities in Generalised Geometry, JHEP11 (2013) 185 [arXiv:1301.0543] [INSPIRE].

  85. [85]

    D.C. Thompson, Duality Invariance: From M-theory to Double Field Theory, JHEP08 (2011) 125 [arXiv:1106.4036] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  86. [86]

    D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP05 (2015) 015 [arXiv:1409.6314] [INSPIRE].

  87. [87]

    D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional Field Theory, JHEP05 (2015) 130 [arXiv:1412.2768] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  88. [88]

    J. Kluson, (m, n)-String and D1-Brane in Stringy Newton-Cartan Background, JHEP04 (2019) 163 [arXiv:1901.11292] [INSPIRE].

  89. [89]

    E. Musaev and H. Samtleben, Fermions and supersymmetry in E 6(6)exceptional field theory, JHEP03 (2015) 027 [arXiv:1412.7286] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. [90]

    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7)Exceptional Field Theory, JHEP09 (2014) 044 [arXiv:1406.3235] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. [91]

    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 Supergravity with Local Scaling Symmetry, JHEP04 (2011) 079 [arXiv:1103.2785] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris D. A. Blair.

Additional information

ArXiv ePrint: 1902.01867

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berman, D.S., Blair, C.D.A. & Otsuki, R. Non-Riemannian geometry of M-theory. J. High Energ. Phys. 2019, 175 (2019). https://doi.org/10.1007/JHEP07(2019)175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2019)175

Keywords

  • M-Theory
  • String Duality