Effective gauge theories of superfluidity with topological order

  • Yuji HironoEmail author
  • Yuya Tanizaki
Open Access
Regular Article - Theoretical Physics


We discuss the low-energy dynamics of superfluidity with topological order in (3 + 1) spacetime dimensions. We generalize a topological BF theory by introducing a non-square K matrix, and this generalized BF theory can describe massless Nambu-Goldstone bosons and anyonic statistics between vortices and quasiparticles. We discuss the general structure of discrete and continuous higher-form symmetries in this theory, which can be used to classify quantum phases. We describe how to identify the appearance of topological order in such systems and discuss its relation to a mixed ’t Hooft anomaly between discrete higher-form symmetries. We apply this framework to the color-flavor locked phase of dense QCD, which shows anyonic particle-vortex statistics while no topological order appears. An explicit example of superfluidity with topological order is discussed.


Anyons Topological Field Theories Phase Diagram of QCD Topological States of Matter 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L.D. Landau, On the theory of phase transitions. I., Zh. Eksp. Teor. Fiz. 11 (1937) 19 [INSPIRE].
  2. [2]
    V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz 20 (1950) 1064 [INSPIRE].Google Scholar
  3. [3]
    Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev. 124 (1961) 246 [INSPIRE].
  5. [5]
    X.G. Wen, Topological Order in Rigid States, Int. J. Mod. Phys. B 4 (1990) 239 [INSPIRE].
  6. [6]
    X.G. Wen and A. Zee, Topological structures, universality classes, and statistics screening in the anyon superfluid, Phys. Rev. B 44 (1991) 274.Google Scholar
  7. [7]
    X.-G. Wen, Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons, Oxford Graduate Texts, Oxford University Press (2007).Google Scholar
  8. [8]
    T.H. Hansson, V. Oganesyan and S.L. Sondhi, Superconductors are topologically ordered, Annals Phys. 313 (2004) 497 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Sachdev, Quantum phase transitions, Cambridge University Press (2011).Google Scholar
  10. [10]
    X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].
  11. [11]
    M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
  12. [12]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R. Dijkgraaf and E. Witten, Mean Field Theory, Topological Field Theory and Multimatrix Models, Nucl. Phys. B 342 (1990) 486 [INSPIRE].
  14. [14]
    X.G. Wen and A. Zee, A Classification of Abelian quantum Hall states and matrix formulation of topological fluids, Phys. Rev. B 46 (1992) 2290 [INSPIRE].
  15. [15]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev. B 99 (2019) 205139 [arXiv:1812.02517] [INSPIRE].
  17. [17]
    S. Chatterjee, S. Sachdev and M. Scheurer, Intertwining topological order and broken symmetry in a theory of fluctuating spin density waves, Phys. Rev. Lett. 119 (2017) 227002 [arXiv:1705.06289] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Sachdev and S. Chatterjee, Insulators and metals with topological order and discrete symmetry breaking, Phys. Rev. B 95 (2017) 205133 [arXiv:1703.00014] [INSPIRE].
  19. [19]
    M.S. Scheurer, S. Chatterjee, W. Wu, M. Ferrero, A. Georges and S. Sachdev, Topological order in the pseudogap metal, Proc. Nat. Acad. Sci. 115 (2018) E3665 [arXiv:1711.09925] [INSPIRE].
  20. [20]
    S. Sachdev, H.D. Scammell, M.S. Scheurer and G. Tarnopolsky, Gauge theory for the cuprates near optimal doping, Phys. Rev. B 99 (2019) 054516 [arXiv:1811.04930] [INSPIRE].
  21. [21]
    M.A. Stephanov, QCD phase diagram and the critical point, Prog. Theor. Phys. Suppl. 153 (2004) 139 [hep-ph/0402115] [INSPIRE].
  22. [22]
    K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74 (2011) 014001 [arXiv:1005.4814] [INSPIRE].
  23. [23]
    H.-c. Ren, Color superconductivity of QCD at high baryon density, 2004, hep-ph/0404074 [INSPIRE].
  24. [24]
    R. Casalbuoni, Lecture Notes on Superconductivity: Condensed Matter and QCD, arXiv:1810.11125 [INSPIRE].
  25. [25]
    B.C. Barrois, Superconducting Quark Matter, Nucl. Phys. B 129 (1977) 390 [INSPIRE].
  26. [26]
    D. Bailin and A. Love, Superfluidity and Superconductivity in Relativistic Fermion Systems, Phys. Rept. 107 (1984) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.G. Alford, K. Rajagopal and F. Wilczek, Color flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537 (1999) 443 [hep-ph/9804403] [INSPIRE].
  28. [28]
    T. Schäfer and F. Wilczek, Continuity of quark and hadron matter, Phys. Rev. Lett. 82 (1999) 3956 [hep-ph/9811473] [INSPIRE].
  29. [29]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.P. Balachandran, S. Digal and T. Matsuura, Semi-superfluid strings in high density QCD, Phys. Rev. D 73 (2006) 074009 [hep-ph/0509276] [INSPIRE].
  31. [31]
    E. Nakano, M. Nitta and T. Matsuura, Non-Abelian strings in high density QCD: Zero modes and interactions, Phys. Rev. D 78 (2008) 045002 [arXiv:0708.4096] [INSPIRE].
  32. [32]
    M. Eto, Y. Hirono, M. Nitta and S. Yasui, Vortices and Other Topological Solitons in Dense Quark Matter, PTEP 2014 (2014) 012D01 [arXiv:1308.1535] [INSPIRE].
  33. [33]
    A. Yamamoto, Non-Abelian vortex in lattice gauge theory, PTEP 2018 (2018) 103B03 [arXiv:1804.08051] [INSPIRE].
  34. [34]
    Y. Hirono and Y. Tanizaki, Quark-Hadron Continuity beyond the Ginzburg-Landau Paradigm, Phys. Rev. Lett. 122 (2019) 212001 [arXiv:1811.10608] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Cherman, S. Sen and L.G. Yaffe, Anyonic particle-vortex statistics and the nature of dense quark matter, arXiv:1808.04827 [INSPIRE].
  36. [36]
    M.G. Alford, G. Baym, K. Fukushima, T. Hatsuda and M. Tachibana, Continuity of vortices from the hadronic to the color-flavor locked phase in dense matter, Phys. Rev. D 99 (2019) 036004 [arXiv:1803.05115] [INSPIRE].
  37. [37]
    C. Chatterjee, M. Nitta and S. Yasui, Quark-hadron continuity under rotation: Vortex continuity or boojum?, Phys. Rev. D 99 (2019) 034001 [arXiv:1806.09291] [INSPIRE].
  38. [38]
    Y. Hirono, T. Kanazawa and M. Nitta, Topological Interactions of Non-Abelian Vortices with Quasi-Particles in High Density QCD, Phys. Rev. D 83 (2011) 085018 [arXiv:1012.6042] [INSPIRE].
  39. [39]
    M. Bergeron, G.W. Semenoff and R.J. Szabo, Canonical bf type topological field theory and fractional statistics of strings, Nucl. Phys. B 437 (1995) 695 [hep-th/9407020] [INSPIRE].
  40. [40]
    G.Y. Cho and J.E. Moore, Topological BF field theory description of topological insulators, Annals Phys. 326 (2011) 1515 [arXiv:1011.3485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    P. Putrov, J. Wang and S.-T. Yau, Braiding Statistics and Link Invariants of Bosonic/Fermionic Topological Quantum Matter in 2 + 1 and 3 + 1 dimensions, Annals Phys. 384 (2017) 254 [arXiv:1612.09298] [INSPIRE].
  42. [42]
    X. Chen, A. Tiwari and S. Ryu, Bulk-boundary correspondence in (3 + 1)-dimensional topological phases, Phys. Rev. B 94 (2016) 045113 [arXiv:1509.04266] [INSPIRE].
  43. [43]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  44. [44]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  45. [45]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Tiwari, X. Chen and S. Ryu, Wilson operator algebras and ground states of coupled BF theories, Phys. Rev. B 95 (2017) 245124 [arXiv:1603.08429] [INSPIRE].
  47. [47]
    E. Lake, Higher-form symmetries and spontaneous symmetry breaking, arXiv:1802.07747 [INSPIRE].
  48. [48]
    X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].
  49. [49]
    A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE].
  50. [50]
    J.C. Wang, Z.-C. Gu and X.-G. Wen, Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond, Phys. Rev. Lett. 114 (2015) 031601 [arXiv:1405.7689] [INSPIRE].
  51. [51]
    E. Witten, TheParityAnomaly On An Unorientable Manifold, Phys. Rev. B 94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].
  52. [52]
    Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1d topological phases, PTEP 2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].
  53. [53]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs Models and Persistent Order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
  57. [57]
    H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].
  58. [58]
    J. Wang, X.-G. Wen and E. Witten, Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions, Phys. Rev. X 8 (2018) 031048 [arXiv:1705.06728] [INSPIRE].
  59. [59]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].
  60. [60]
    Y. Tanizaki, T. Misumi and N. Sakai, Circle compactification andt Hooft anomaly, JHEP 12 (2017) 056 [arXiv:1710.08923] [INSPIRE].
  61. [61]
    Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram of masslessN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].
  62. [62]
    M. Guo, P. Putrov and J. Wang, Time reversal, SU(N ) Yang-Mills and cobordisms: Interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D, Annals Phys. 394 (2018) 244 [arXiv:1711.11587] [INSPIRE].
  63. [63]
    T. Sulejmanpasic and Y. Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains, Phys. Rev. B 97 (2018) 144201 [arXiv:1802.02153] [INSPIRE].
  64. [64]
    Y. Tanizaki and T. Sulejmanpasic, Anomaly and global inconsistency matching: θ-angles, SU(3)/U(1)2 nonlinear σ-model, SU(3) chains and its generalizations, Phys. Rev. B 98 (2018)115126 [arXiv:1805.11423] [INSPIRE].
  65. [65]
    C. Córdova and T.T. Dumitrescu, Candidate Phases for SU(2) Adjoint QCD 4 with Two Flavors from \( \mathcal{N}=2 \) Supersymmetric Yang-Mills Theory, arXiv:1806.09592 [INSPIRE].
  66. [66]
    M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026 [arXiv:1805.12290] [INSPIRE].
  67. [67]
    M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models and high-T super Yang-Mills domain walls, JHEP 09 (2018) 076 [arXiv:1807.00093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    K. Yonekura, Anomaly matching in QCD thermal phase transition, JHEP 05 (2019) 062 [arXiv:1901.08188] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].
  71. [71]
    Y. Hidaka, Y. Hirono, M. Nitta, Y. Tanizaki and R. Yokokura, Topological order in the color-flavor locked phase of (3 + 1)-dimensional U(N) gauge-Higgs system, arXiv:1903.06389 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Asia Pacific Center for Theoretical PhysicsPohangKorea
  2. 2.Department of Physics, POSTECHPohangKorea
  3. 3.Department of PhysicsNorth Carolina State UniversityRaleighU.S.A.

Personalised recommendations