Skip to main content

Worldsheet instanton corrections to five-branes and waves in double field theory

A preprint version of the article is available at arXiv.

Abstract

We make a comprehensive study on the string winding corrections to supergravity solutions in double field theory (DFT). We find five-brane and wave solutions of diverse codimensions in which the winding coordinates are naturally included. We discuss a physical interpretation of the winding coordinate dependence. The analysis based on the geometric structures behind the solutions leads to an interpretation of the winding dependence as string worldsheet instanton corrections. We also give a brief discussion on the origins of these winding corrections in gauged linear sigma model. Our analysis reveals that for every supergravity solution, one has DFT solutions that include string winding corrections.

References

  1. N.A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].

  2. S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].

  3. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

  5. J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

  8. Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  9. D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].

  10. D. Tong, NS5-branes, T-duality and worldsheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. S. Jensen, The KK-monopole/NS5-brane in doubled geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].

  13. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T-duality of Kaluza-Klein and H-monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  14. T. Kimura and S. Sasaki, Gauged linear sigma model for exotic five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].

  15. T. Kimura and S. Sasaki, Worldsheet instanton corrections to 5 22 -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  16. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

  17. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

  18. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE].

  20. J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and branes are waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. D.S. Berman and F.J. Rudolph, Branes are waves and monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].

  23. A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].

  24. [24] V. Vall Camell, NS5 duals in supergravity and double field theory, PoS(CORFU2016)114.

  25. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. C.G. Callan Jr., J.A. Harvey and A. Strominger, Worldsheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].

  27. T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. X.C. de la Ossa and F. Quevedo, Duality symmetries from non-Abelian isometries in string theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

  30. T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. V.K. Onemli and B. Tekin, Kaluza-Klein vortices, JHEP 01 (2001) 034 [hep-th/0011287] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP 11 (2016) 042 [arXiv:1608.06818] [INSPIRE].

  34. A. Sen, Kaluza-Klein dyons in string theory, Phys. Rev. Lett. 79 (1997) 1619 [hep-th/9705212] [INSPIRE].

    ADS  Article  Google Scholar 

  35. T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].

    ADS  Google Scholar 

  36. D. Lüst, E. Plauschinn and V. Vall Camell, Unwinding strings in semi-flatland, JHEP 07 (2017) 027 [arXiv:1706.00835] [INSPIRE].

  37. E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual double field theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. X.G. Wen and E. Witten, World-sheet instantons and the Peccei-Quinn symmetry, Phys. Lett. B 166 (1986) 397 [INSPIRE].

  39. E. Witten, Phases of \( \mathcal{N}=2 \) theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

  40. E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. K. Okuyama, Linear sigma models of H and KK monopoles, JHEP 08 (2005) 089 [hep-th/0508097] [INSPIRE].

  42. P.J. Ruback, Sigma model solitons and their moduli space metrics, Commun. Math. Phys. 116 (1988) 645 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet. 2, Nucl. Phys. B 289 (1987) 319 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. M. Roček and E.P. Verlinde, Duality, quotients, and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. T. Kimura and S. Sasaki, Worldsheet description of exotic five-brane with two gauged isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].

  46. T. Kimura and M. Yata, T-duality transformation of gauged linear sigma model with F-term, Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. T. Kimura, \( \mathcal{N}=\left(4,4\right) \) gauged linear sigma models for defect five-branes, arXiv:1503.08635 [INSPIRE].

  48. T. Kimura, Gauge-fixing condition on prepotential of chiral multiplet for nongeometric backgrounds, PTEP 2016 (2016) 023B04 [arXiv:1506.05005] [INSPIRE].

  49. T. Kimura, Semi-doubled sigma models for five-branes, JHEP 02 (2016) 013 [arXiv:1512.05548] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

  51. D.S. Berman and F.J. Rudolph, Strings, branes and the self-dual solutions of exceptional field theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in exceptional field theory: the SL(5) duality group, arXiv:1710.09740 [INSPIRE].

  53. I. Achmed-Zade, J.D. Hamilton, Mark, D. Lüst and S. Massai, A note on T-folds and T 3 fibrations, arXiv:1803.00550 [INSPIRE].

  54. A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].

  55. T. Kimura, S. Sasaki and M. Yata, World-volume effective actions of exotic five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].

  56. T. Kimura, S. Sasaki and M. Yata, World-volume effective action of exotic five-brane in M-theory, JHEP 02 (2016) 168 [arXiv:1601.05589] [INSPIRE].

  57. C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018) 111 [arXiv:1712.01739] [INSPIRE].

  58. S. Sasaki and M. Yata, Non-geometric five-branes in heterotic supergravity, JHEP 11 (2016) 064 [arXiv:1608.01436] [INSPIRE].

  59. S. Sasaki and M. Yata, Gauge five-brane solutions of co-dimension two in heterotic supergravity, JHEP 10 (2017) 214 [arXiv:1708.08066] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Shiozawa.

Additional information

ArXiv ePrint: 1803.11087

The affiliation since April 2018: Research Institute of Science and Technology, College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan. (Tetsuji Kimura)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Sasaki, S. & Shiozawa, K. Worldsheet instanton corrections to five-branes and waves in double field theory. J. High Energ. Phys. 2018, 1 (2018). https://doi.org/10.1007/JHEP07(2018)001

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2018)001

Keywords

  • p-branes
  • String Duality