On the generalized geometry origin of noncommutative gauge theory

  • Branislav Jurčo
  • Peter Schupp
  • Jan Vysoký
Open Access


We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.


D-branes Non-Commutative Geometry Differential and Algebraic Geometry Sigma Models 


  1. [1]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  3. [3]
    A.S. Cattaneo, On the integration of poisson manifolds, Lie algebroids and coisotropic submanifolds, Lett. Math. Phys. 67 (2004) 33 [math/0308180].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson σ-models and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005) 400 [math/0406445] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Kotov and T. Strobl, Generalizing geometryAlgebroids and σ-models, arXiv:1004.0632 [INSPIRE].
  7. [7]
    A. Kotov, P. Schaller and T. Strobl, Dirac σ-models, Commun. Math. Phys. 260 (2005) 455 [hep-th/0411112] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    C. Klimčík and T. Strobl, WZWPoisson manifolds, J. Geom. Phys. 43 (2002) 341 [math/0104189] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    P. Ševera, Letters to Alan Weinstein. 2,∼severa/letters/.
  10. [10]
    T. Asakawa, S. Sasa and S. Watamura, D-branes in generalized geometry and Dirac-Born-Infeld action, JHEP 10 (2012) 064 [arXiv:1206.6964] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A.S. Cattaneo and G. Felder, Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys. 69 (2004) 157 [math/0309180].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035 [hep-th/0410183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Ekstrand and M. Zabzine, Courant-like brackets and loop spaces, JHEP 03 (2011) 074 [arXiv:0903.3215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP 09 (2005) 015 [hep-th/0507051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP 07 (2008) 137 [arXiv:0805.4571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Roytenberg, A Note on quasi Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002) 123 [math/0112152] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
  18. [18]
    C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Noncommutative geometry from strings and branes, JHEP 02 (1999) 016 [hep-th/9810072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    B. Jurčo and P. Schupp, Nambu-σ-model and effective membrane actions, Phys. Lett. B 713 (2012) 313 [arXiv:1203.2910] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Schupp and B. Jurčo, Nambu σ-model and branes, PoS(CORFU2011)045 [arXiv:1205.2595] [INSPIRE].
  26. [26]
    P. Bouwknegt, Lectures on cohomology, T-duality, and generalized geometry, Lect. Notes Phys. 807 (2010) 261.ADSCrossRefGoogle Scholar
  27. [27]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    L. Baulieu, A.S. Losev and N.A. Nekrasov, Target space symmetries in topological theories. 1, JHEP 02 (2002) 021 [hep-th/0106042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Zumino, Cohomology of gauge groups: cocycles and Schwinger terms, Nucl. Phys. B 253 (1985) 477 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D. Brace, B. Cerchiai, A. Pasqua, U. Varadarajan and B. Zumino, A cohomological approach to the nonAbelian Seiberg-Witten map, JHEP 06 (2001) 047 [hep-th/0105192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B. Cerchiai, A. Pasqua and B. Zumino, The Seiberg-Witten map for noncommutative gauge theories, talk presented at Continuous Advances in QCD 2002/Arkadyfest, May 17-23, University of Minnesota, U.S.A. (2002), hep-th/0206231 [INSPIRE].
  34. [34]
    B. Jurčo and P. Schupp, Noncommutative Yang-Mills from equivalence of star products, Eur. Phys. J. C 14 (2000) 367 [hep-th/0001032] [INSPIRE].ADSGoogle Scholar
  35. [35]
    B. Jurčo, P. Schupp and J. Wess, Noncommutative gauge theory for Poisson manifolds, Nucl. Phys. B 584 (2000) 784 [hep-th/0005005] [INSPIRE].ADSGoogle Scholar
  36. [36]
    B. Jurčo, P. Schupp and J. Wess, Non-abelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B 604 (2001) 148 [hep-th/0102129] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Aschieri, I. Bakovic, B. Jurčo and P. Schupp, Noncommutative gerbes and deformation quantization, hep-th/0206101 [INSPIRE].
  38. [38]
    H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, math/0202099.
  39. [39]
    D. Brace, B. Morariu and B. Zumino, Duality invariant Born-Infeld theory, hep-th/9905218 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Mathematical Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.CERN, Theory DivisionGeneva 23Switzerland
  3. 3.Jacobs University BremenBremenGermany
  4. 4.Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical EngineeringPragueCzech Republic

Personalised recommendations