Abstract
Charged-lepton-flavor-violation is predicted in several new physics scenarios. We update the analysis of τ lepton decays into a light charged lepton (ℓ = e± or μ±) and a vector meson (V0 = ρ0, ϕ, ω, K*0, or \( \overline{K} \)*0) using 980 fb−1 of data collected with the Belle detector at the KEKB collider. No significant excess of such signal events is observed, and thus 90% credibility level upper limits are set on the τ → ℓV0 branching fractions in the range of (1.7–4.3) × 10−8. These limits are improved by 30% on average from the previous results.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor violating τ decays, Phys. Rev. D 89 (2014) 095014 [arXiv:1403.5781] [INSPIRE].
MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
SINDRUM collaboration, Search for the Decay μ+ → e+e+e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE].
SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].
BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
BaBar collaboration, Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
Belle collaboration, Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
Belle collaboration, Measurement of the τ lepton polarization and R(D*) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
Belle collaboration, Measurement of \( \mathcal{R} \)(D) and \( \mathcal{R} \)(D*) with a semileptonic tagging method, Phys. Rev. Lett. 124 (2020) 161803 [arXiv:1910.05864] [INSPIRE].
LHCb collaboration, Measurement of the ratio of branching fractions \( \mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathcal{B}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντ and B0 → D*−μ+νμ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
Belle collaboration, Lepton-Flavor-Dependent Angular Analysis of B → K*ℓ+ℓ−, Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].
LHCb collaboration, Measurement of CP-Averaged Observables in the B0 → K*0μ+μ− Decay, Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831] [INSPIRE].
LHCb collaboration, Angular Analysis of the B+ → K*+μ+μ− Decay, Phys. Rev. Lett. 126 (2021) 161802 [arXiv:2012.13241] [INSPIRE].
LHCb collaboration, Branching Fraction Measurements of the Rare \( {B}_s^0\to \phi {\mu}^{+}{\mu}^{-} \) and \( {B}_s^0\to {f}_2^{\prime }(1525){\mu}^{+}{\mu}^{-} \)- Decays, Phys. Rev. Lett. 127 (2021) 151801 [arXiv:2105.14007] [INSPIRE].
C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, The fate of V1 vector leptoquarks: the impact of future flavour data, Eur. Phys. J. C 81 (2021) 1066 [arXiv:2012.05883] [INSPIRE].
L. Di Luzio et al., Maximal Flavour Violation: a Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081 [arXiv:1808.00942] [INSPIRE].
J. Kumar, D. London and R. Watanabe, Combined Explanations of the b → sμ+μ− and \( b\to c{\tau}^{-}\overline{\nu} \) Anomalies: a General Model Analysis, Phys. Rev. D 99 (2019) 015007 [arXiv:1806.07403] [INSPIRE].
A. Crivellin, C. Greub, D. Müller and F. Saturnino, Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark, Phys. Rev. Lett. 122 (2019) 011805 [arXiv:1807.02068] [INSPIRE].
A. Crivellin, D. Müller and F. Saturnino, Flavor Phenomenology of the Leptoquark Singlet-Triplet Model, JHEP 06 (2020) 020 [arXiv:1912.04224] [INSPIRE].
P.S. Bhupal Dev, R. Mohanta, S. Patra and S. Sahoo, Unified explanation of flavor anomalies, radiative neutrino masses, and ANITA anomalous events in a vector leptoquark model, Phys. Rev. D 102 (2020) 095012 [arXiv:2004.09464] [INSPIRE].
LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].
LHCb collaboration, Test of lepton universality in b → sℓ+ℓ− decays, arXiv:2212.09152 [INSPIRE].
A. Ilakovac, Lepton flavor violation in the standard model extended by heavy singlet Dirac neutrinos, Phys. Rev. D 62 (2000) 036010 [hep-ph/9910213] [INSPIRE].
Z.-H. Li, Y. Li and H.-X. Xu, Unparticle-Induced Lepton Flavor Violating Decays τ → ℓ(V0, P0), Phys. Lett. B 677 (2009) 150 [arXiv:0901.3266] [INSPIRE].
A. Arhrib, R. Benbrik and C.-H. Chen, Lepton flavor violating tau decays in type-III seesaw mechanism, Phys. Rev. D 81 (2010) 113003 [arXiv:0903.1553] [INSPIRE].
I. Pacheco and P. Roig, Lepton flavour violation in hadron decays of the tau lepton within the littlest Higgs model with T-parity, JHEP 09 (2022) 144 [arXiv:2207.04085] [INSPIRE].
Belle collaboration, Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].
S. Kurokawa and E. Kikutani, Overview of the KEKB accelerators, Nucl. Instrum. Meth. A 499 (2003) 1 [INSPIRE].
T. Abe et al., Achievements of KEKB, PTEP 2013 (2013) 03A001 [INSPIRE].
Belle collaboration, The Belle Detector, Nucl. Instrum. Meth. A 479 (2002) 117 [INSPIRE].
Belle collaboration, Physics Achievements from the Belle Experiment, PTEP 2012 (2012) 04D001 [arXiv:1212.5342] [INSPIRE].
S. Jadach, B.F.L. Ward and Z. Was, The Precision Monte Carlo event generator K K for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130 (2000) 260 [hep-ph/9912214] [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
S. Jadach, E. Richter-Was, B.F.L. Ward and Z. Was, Monte Carlo program BHLUMI-2.01 for Bhabha scattering at low angles with Yennie-Frautschi-Suura exponentiation, Comput. Phys. Commun. 70 (1992) 305 [INSPIRE].
F.A. Berends, P.H. Daverveldt and R. Kleiss, Monte Carlo Simulation of Two Photon Processes. 2. Complete Lowest Order Calculations for Four Lepton Production Processes in electron Positron Collisions, Comput. Phys. Commun. 40 (1986) 285 [INSPIRE].
R. Brun et al., GEANT Detector Description and Simulation Tool, CERN-W5013 (1994) [https://doi.org/10.17181/CERN.MUHF.DMJ1] [INSPIRE].
S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [INSPIRE].
E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].
K. Hanagaki et al., Electron identification in Belle, Nucl. Instrum. Meth. A 485 (2002) 490 [hep-ex/0108044] [INSPIRE].
A. Abashian et al., Muon identification in the Belle experiment at KEKB, Nucl. Instrum. Meth. A 491 (2002) 69 [INSPIRE].
E. Nakano, Belle PID, Nucl. Instrum. Meth. A 494 (2002) 402 [INSPIRE].
G. Ke et al., LightGBM: A Highly Efficient Gradient Boosting Decision Tree, in Advances in Neural Information Processing Systems, I. Guyon et al., eds., vol. 30, Curran Associates, Inc., (2017), https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
J.A. Hanley and B.J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982) 29.
G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908 (2003) MODT002 [physics/0308063] [INSPIRE].
F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].
S. Banerjee, B. Pietrzyk, J.M. Roney and Z. Was, Tau and muon pair production cross-sections in electron-positron annihilations at \( \sqrt{s} \) = 10.58 GeV, Phys. Rev. D 77 (2008) 054012 [arXiv:0706.3235] [INSPIRE].
A. Caldwell, D. Kollar and K. Kroninger, BAT: The Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].
Acknowledgments
This work, based on data collected using the Belle detector, which was operated until June 2010, was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), in particular the Grant-in-Aid for Scientific Research (S) 18H05226 and (A) 19H00682, and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DE220100462, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11675166, No. 11705209; No. 11975076; No. 12135005; No. 12175041; No. 12161141008; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; Project ZR2022JQ02 supported by Shandong Provincial Natural Science Foundation; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Czech Science Foundation Grant No. 22-18469S; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the Volkswagen-Stiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, RS202200197659, 2019R1I1A3A01058933, 2021R1A6A1A03043957, 2021R1F1A1060423, 2021R1F1A1064008, 2021R1A4A2001897, 2022R1A2C1003993; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation. These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives. We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 6 (SINET6) for valuable network support.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2301.03768
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
The Belle collaboration., Tsuzuki, N., Inami, K. et al. Search for lepton-flavor-violating τ decays into a lepton and a vector meson using the full Belle data sample. J. High Energ. Phys. 2023, 118 (2023). https://doi.org/10.1007/JHEP06(2023)118
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2023)118