Abstract
The hierarchy in scale between atmospheric and solar neutrino mass splittings is investigated through two distinct neutrino mass mechanisms from tree-level and one-loop-level contributions. We demonstrate that the minimal discrete dark matter mechanism contains the ingredients for explaining this hierarchy. This scenario is characterized by adding new RH neutrinos and SU(2)-doublet scalars to the Standard Model as triplet representations of an A4 flavor symmetry. The A4 symmetry breaking, which occurs at the electroweak scale, leads to a residual ℤ2 symmetry responsible for the dark matter stability and dictates the neutrino phenomenology. Finally, we show that to reproduce the neutrino mixing angles correctly, it is necessary to violate CP in the scalar potential.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].
C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071 [arXiv:2006.11237] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
I.P. Ivanov, Radiative neutrino masses from order-4 CP symmetry, JHEP 02 (2018) 025 [arXiv:1712.02101] [INSPIRE].
N. Rojas, R. Srivastava and J.W.F. Valle, Simplest Scoto-Seesaw Mechanism, Phys. Lett. B 789 (2019) 132 [arXiv:1807.11447] [INSPIRE].
A. Aranda, C. Bonilla and E. Peinado, Dynamical generation of neutrino mass scales, Phys. Lett. B 792 (2019) 40 [arXiv:1808.07727] [INSPIRE].
M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: A Theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [hep-ph/0004115] [Erratum ibid. 65 (2002) 119901] [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].
D. Aristizabal Sierra and C.E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [arXiv:1106.3587] [INSPIRE].
W. Grimus and L. Lavoura, One-loop corrections to the seesaw mechanism in the multi-Higgs-doublet standard model, Phys. Lett. B 546 (2002) 86 [hep-ph/0207229] [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
A. Ibarra and C. Simonetto, Understanding neutrino properties from decoupling right-handed neutrinos and extra Higgs doublets, JHEP 11 (2011) 022 [arXiv:1107.2386] [INSPIRE].
D.M. Barreiros, F.R. Joaquim, R. Srivastava and J.W.F. Valle, Minimal scoto-seesaw mechanism with spontaneous CP violation, JHEP 04 (2021) 249 [arXiv:2012.05189] [INSPIRE].
D.M. Barreiros, H.B. Camara and F.R. Joaquim, Flavour and dark matter in a scoto/type-II seesaw model, JHEP 08 (2022) 030 [arXiv:2204.13605] [INSPIRE].
S. Mandal, R. Srivastava and J.W.F. Valle, The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability, Phys. Lett. B 819 (2021) 136458 [arXiv:2104.13401] [INSPIRE].
J. Ganguly, J. Gluza and B. Karmakar, Common origin of θ13 and dark matter within the flavor symmetric scoto-seesaw framework, JHEP 11 (2022) 074 [arXiv:2209.08610] [INSPIRE].
J.M. Lamprea and E. Peinado, Seesaw scale discrete dark matter and two-zero texture Majorana neutrino mass matrices, Phys. Rev. D 94 (2016) 055007 [arXiv:1603.02190] [INSPIRE].
L.M.G. De La Vega, R. Ferro-Hernandez and E. Peinado, Simple A4 models for dark matter stability with texture zeros, Phys. Rev. D 99 (2019) 055044 [arXiv:1811.10619] [INSPIRE].
A. Degee, I.P. Ivanov and V. Keus, Geometric minimization of highly symmetric potentials, JHEP 02 (2013) 125 [arXiv:1211.4989] [INSPIRE].
I. de Medeiros Varzielas and D. Ivo, Softly-broken A4 or S4 3HDMs with stable states, Eur. Phys. J. C 82 (2022) 415 [arXiv:2202.00681] [INSPIRE].
S. Carrolo, J.C. Romao and J.P. Silva, Conditions for global minimum in the A4 symmetric 3HDM, Eur. Phys. J. C 82 (2022) 749 [arXiv:2207.02928] [INSPIRE].
P. Escribano, M. Reig and A. Vicente, Generalizing the Scotogenic model, JHEP 07 (2020) 097 [arXiv:2004.05172] [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into μ+μ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes and M. Tórtola, Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects, Front. Astron. Space Sci. 5 (2018) 36 [arXiv:1806.11051] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
M.S. Boucenna, M. Hirsch, S. Morisi, E. Peinado, M. Taoso and J.W.F. Valle, Phenomenology of Dark Matter from A4 Flavor Symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].
W. Rodejohann and J.W.F. Valle, Symmetrical Parametrizations of the Lepton Mixing Matrix, Phys. Rev. D 84 (2011) 073011 [arXiv:1108.3484] [INSPIRE].
KamLAND-Zen collaboration, Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen, Phys. Rev. Lett. 130 (2023) 051801 [arXiv:2203.02139] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [Erratum ibid. 652 (2021) C4] [INSPIRE].
LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE].
SNO+ collaboration, Current Status and Future Prospects of the SNO+ Experiment, Adv. High Energy Phys. 2016 (2016) 6194250 [arXiv:1508.05759] [INSPIRE].
nEXO collaboration, Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay, Phys. Rev. C 97 (2018) 065503 [arXiv:1710.05075] [INSPIRE].
CUPID collaboration, CUPID pre-CDR, arXiv:1907.09376 [INSPIRE].
C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [Erratum ibid. 92 (2015) 039906] [INSPIRE].
K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 139 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2021-053 (2021).
O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov and J. Wynne, The flavourful present and future of 2HDMs at the collider energy frontier, JHEP 11 (2022) 139 [arXiv:2202.08807] [INSPIRE].
J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.
ATLAS collaboration, Measurement of the properties of Higgs boson production at \( \sqrt{s} \) = 13 TeV in the H → γγ channel using 139 fb−1 of pp collision data with the ATLAS experiment, arXiv:2207.00348 [INSPIRE].
CMS collaboration, Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at s = 13 TeV, Phys. Rev. D 105 (2022) 092007 [arXiv:2201.11585] [INSPIRE].
N. Chen, T. Han, S. Li, S. Su, W. Su and Y. Wu, Type-I 2HDM under the Higgs and Electroweak Precision Measurements, JHEP 08 (2020) 131 [arXiv:1912.01431] [INSPIRE].
B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].
Acknowledgments
Work supported by the Chilean grant Fondecyt Iniciación No. 11201240 (Nu Physics); the Mexican grants CONACYT CB-2017-2018/A1-S-13051 and DGAPA-PAPIIT IN107621; and the Spanish grants PID2020-113775GB-I00 (AEI/10.13039/501100011033) and Prometeo CIPROM/2021/054 (Generalitat Valenciana). OM is supported by Programa Santiago Grisolía (No. GRISOLIA/2020/025). EP is grateful to funding from ‘Cátedras Marcos Moshinsky’ (Fundación Marcos Moshinsky). OM thanks Salvador Centelles Chuliá, Professor Luís Lavoura for insightful discussion through email correspondence, and Professor Martin Konrad Hirsch for his (∞) patience and help during discussions concerning this work. CB would like to thank IFUNAM and Instituto de Física Corpuscular (CSIC-UV) for the hospitality while part of this work was carried out.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2301.10811
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bonilla, C., Herms, J., Medina, O. et al. Discrete dark matter mechanism as the source of neutrino mass scales. J. High Energ. Phys. 2023, 78 (2023). https://doi.org/10.1007/JHEP06(2023)078
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2023)078