Abstract
The equation of state of neutron-star cores can be constrained by requiring a consistent connection to the perturbative Quantum Chromodynamics (QCD) calculations at high densities. The constraining power of the QCD input depends on uncertainties from missing higher-order terms, the choice of the unphysical renormalization scale, and the reference density where QCD calculations are performed. Within a Bayesian approach, we discuss the convergence of the perturbative QCD series, quantify its uncertainties at high densities, and present a framework to systematically propagate the uncertainties down to neutron-star densities. We find that the effect of the QCD input on the neutron-star inference is insensitive to the various unphysical choices made in the uncertainty estimation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Lovato et al., Long Range Plan: Dense matter theory for heavy-ion collisions and neutron stars, arXiv:2211.02224 [INSPIRE].
A. Sorensen et al., Dense Nuclear Matter Equation of State from Heavy-Ion Collisions, arXiv:2301.13253 [INSPIRE].
E. Annala et al., Evidence for quark-matter cores in massive neutron stars, Nature Phys. 16 (2020) 907 [arXiv:1903.09121] [INSPIRE].
Y. Fujimoto, K. Fukushima, L.D. McLerran and M. Praszalowicz, Trace Anomaly as Signature of Conformality in Neutron Stars, Phys. Rev. Lett. 129 (2022) 252702 [arXiv:2207.06753] [INSPIRE].
T. Kojo, Stiffening of matter in quark-hadron continuity, Phys. Rev. D 104 (2021) 074005 [arXiv:2106.06687] [INSPIRE].
H. Tan, V. Dexheimer, J. Noronha-Hostler and N. Yunes, Finding Structure in the Speed of Sound of Supranuclear Matter from Binary Love Relations, Phys. Rev. Lett. 128 (2022) 161101 [arXiv:2111.10260] [INSPIRE].
P. Demorest et al., Shapiro Delay Measurement of A Two Solar Mass Neutron Star, Nature 467 (2010) 1081 [arXiv:1010.5788] [INSPIRE].
J. Antoniadis et al., A Massive Pulsar in a Compact Relativistic Binary, Science 340 (2013) 6131 [arXiv:1304.6875] [INSPIRE].
J. Nättilä et al., Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra, Astron. Astrophys. 608 (2017) A31 [arXiv:1709.09120] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121 (2018) 161101 [arXiv:1805.11581] [INSPIRE].
M. Linares, T. Shahbaz and J. Casares, Peering into the dark side: Magnesium lines establish a massive neutron star in PSR J2215+5135, Astrophys. J. 859 (2018) 54 [arXiv:1805.08799] [INSPIRE].
NANOGrav collaboration, Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astron. 4 (2019) 72 [arXiv:1904.06759] [INSPIRE].
E. Fonseca et al., Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620, Astrophys. J. Lett. 915 (2021) L12 [arXiv:2104.00880] [INSPIRE].
M.C. Miller et al., PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter, Astrophys. J. Lett. 887 (2019) L24 [arXiv:1912.05705] [INSPIRE].
T.E. Riley et al., A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation, Astrophys. J. Lett. 887 (2019) L21 [arXiv:1912.05702] [INSPIRE].
M.C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918 (2021) L28 [arXiv:2105.06979] [INSPIRE].
T.E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918 (2021) L27 [arXiv:2105.06980] [INSPIRE].
R.W. Romani et al., PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star, Astrophys. J. Lett. 934 (2022) L17 [arXiv:2207.05124] [INSPIRE].
P. Landry and R. Essick, Nonparametric inference of the neutron star equation of state from gravitational wave observations, Phys. Rev. D 99 (2019) 084049 [arXiv:1811.12529] [INSPIRE].
R. Essick, P. Landry and D.E. Holz, Nonparametric Inference of Neutron Star Composition, Equation of State, and Maximum Mass with GW170817, Phys. Rev. D 101 (2020) 063007 [arXiv:1910.09740] [INSPIRE].
M.C. Miller, C. Chirenti and F.K. Lamb, Constraining the equation of state of high-density cold matter using nuclear and astronomical measurements, arXiv:1904.08907 [https://doi.org/10.3847/1538-4357/ab4ef9] [INSPIRE].
Y. Fujimoto, K. Fukushima and K. Murase, Mapping neutron star data to the equation of state using the deep neural network, Phys. Rev. D 101 (2020) 054016 [arXiv:1903.03400] [INSPIRE].
G. Raaijmakers et al., Constraining the dense matter equation of state with joint analysis of NICER and LIGO/Virgo measurements, Astrophys. J. Lett. 893 (2020) L21 [arXiv:1912.11031] [INSPIRE].
R. Essick and P. Landry, Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass, Astrophys. J. 904 (2020) 80 [arXiv:2007.01372] [INSPIRE].
R. Essick et al., Direct Astrophysical Tests of Chiral Effective Field Theory at Supranuclear Densities, Phys. Rev. C 102 (2020) 055803 [arXiv:2004.07744] [INSPIRE].
M. Al-Mamun et al., Combining Electromagnetic and Gravitational-Wave Constraints on Neutron-Star Masses and Radii, Phys. Rev. Lett. 126 (2021) 061101 [arXiv:2008.12817] [INSPIRE].
T. Dietrich et al., Multimessenger constraints on the neutron-star equation of state and the Hubble constant, Science 370 (2020) 1450 [arXiv:2002.11355] [INSPIRE].
S. Huth et al., Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions, Nature 606 (2022) 276 [arXiv:2107.06229] [INSPIRE].
G. Raaijmakers et al., Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations, Astrophys. J. Lett. 918 (2021) L29 [arXiv:2105.06981] [INSPIRE].
R. Essick, I. Tews, P. Landry and A. Schwenk, Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of Pb208 with Minimal Modeling Assumptions, Phys. Rev. Lett. 127 (2021) 192701 [arXiv:2102.10074] [INSPIRE].
I. Legred, K. Chatziioannou, R. Essick and P. Landry, Implicit correlations within phenomenological parametric models of the neutron star equation of state, Phys. Rev. D 105 (2022) 043016 [arXiv:2201.06791] [INSPIRE].
T. Gorda, O. Komoltsev and A. Kurkela, Ab-initio QCD calculations impact the inference of the neutron-star-matter equation of state, arXiv:2204.11877 [INSPIRE].
M.-Z. Han, Y.-J. Huang, S.-P. Tang and Y.-Z. Fan, Plausible presence of new state in neutron stars with masses above 0.98MTOV, Sci. Bull. 68 (2023) 913 [arXiv:2207.13613] [INSPIRE].
J.-L. Jiang, C. Ecker and L. Rezzolla, Bayesian Analysis of Neutron-star Properties with Parameterized Equations of State: The Role of the Likelihood Functions, Astrophys. J. 949 (2023) 11 [arXiv:2211.00018] [INSPIRE].
B.A. Freedman and L.D. McLerran, Fermions and Gauge Vector Mesons at Finite Temperature and Density. 3. The Ground State Energy of a Relativistic Quark Gas, Phys. Rev. D 16 (1977) 1169 [INSPIRE].
E.S. Fraga and P. Romatschke, The role of quark mass in cold and dense perturbative QCD, Phys. Rev. D 71 (2005) 105014 [hep-ph/0412298] [INSPIRE].
A. Kurkela, P. Romatschke and A. Vuorinen, Cold Quark Matter, Phys. Rev. D 81 (2010) 105021 [arXiv:0912.1856] [INSPIRE].
A. Kurkela and A. Vuorinen, Cool quark matter, Phys. Rev. Lett. 117 (2016) 042501 [arXiv:1603.00750] [INSPIRE].
T. Gorda et al., Next-to-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading Logarithm, Phys. Rev. Lett. 121 (2018) 202701 [arXiv:1807.04120] [INSPIRE].
T. Gorda and S. Säppi, Cool quark matter with perturbative quark masses, Phys. Rev. D 105 (2022) 114005 [arXiv:2112.11472] [INSPIRE].
T. Gorda et al., Soft Interactions in Cold Quark Matter, Phys. Rev. Lett. 127 (2021) 162003 [arXiv:2103.05658] [INSPIRE].
T. Gorda et al., Cold quark matter at N3LO: Soft contributions, Phys. Rev. D 104 (2021) 074015 [arXiv:2103.07427] [INSPIRE].
O. Komoltsev and A. Kurkela, How Perturbative QCD Constrains the Equation of State at Neutron-Star Densities, Phys. Rev. Lett. 128 (2022) 202701 [arXiv:2111.05350] [INSPIRE].
A. Kurkela, E.S. Fraga, J. Schaffner-Bielich and A. Vuorinen, Constraining neutron star matter with Quantum Chromodynamics, Astrophys. J. 789 (2014) 127 [arXiv:1402.6618] [INSPIRE].
C. Ecker and L. Rezzolla, A General, Scale-independent Description of the Sound Speed in Neutron Stars, Astrophys. J. Lett. 939 (2022) L35 [arXiv:2207.04417] [INSPIRE].
M. Marczenko, L. McLerran, K. Redlich and C. Sasaki, Conformality and percolation threshold in neutron stars, EPJ Web Conf. 274 (2022) 07014 [arXiv:2212.10165] [INSPIRE].
S. Altiparmak, C. Ecker and L. Rezzolla, On the Sound Speed in Neutron Stars, Astrophys. J. Lett. 939 (2022) L34 [arXiv:2203.14974] [INSPIRE].
R. Somasundaram, I. Tews and J. Margueron, Investigating signatures of phase transitions in neutron-star cores, Phys. Rev. C 107 (2023) 025801 [arXiv:2112.08157] [INSPIRE].
R. Somasundaram, I. Tews and J. Margueron, Perturbative QCD and the Neutron Star Equation of State, arXiv:2204.14039 [INSPIRE].
R.J. Furnstahl, D.R. Phillips and S. Wesolowski, A recipe for EFT uncertainty quantification in nuclear physics, J. Phys. G 42 (2015) 034028 [arXiv:1407.0657] [INSPIRE].
S. Wesolowski et al., Bayesian parameter estimation for effective field theories, J. Phys. G 43 (2016) 074001 [arXiv:1511.03618] [INSPIRE].
C. Drischler, K. Hebeler and A. Schwenk, Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation, Phys. Rev. Lett. 122 (2019) 042501 [arXiv:1710.08220] [INSPIRE].
Y. Lim and J.W. Holt, Neutron star tidal deformabilities constrained by nuclear theory and experiment, Phys. Rev. Lett. 121 (2018) 062701 [arXiv:1803.02803] [INSPIRE].
S. Wesolowski, R.J. Furnstahl, J.A. Melendez and D.R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts, J. Phys. G 46 (2019) 045102 [arXiv:1808.08211] [INSPIRE].
J.A. Melendez et al., Quantifying Correlated Truncation Errors in Effective Field Theory, Phys. Rev. C 100 (2019) 044001 [arXiv:1904.10581] [INSPIRE].
C. Drischler, R.J. Furnstahl, J.A. Melendez and D.R. Phillips, How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties, Phys. Rev. Lett. 125 (2020) 202702 [arXiv:2004.07232] [INSPIRE].
C. Drischler, J.A. Melendez, R.J. Furnstahl and D.R. Phillips, Quantifying uncertainties and correlations in the nuclear-matter equation of state, Phys. Rev. C 102 (2020) 054315 [arXiv:2004.07805] [INSPIRE].
J. Keller, C. Wellenhofer, K. Hebeler and A. Schwenk, Neutron matter at finite temperature based on chiral effective field theory interactions, Phys. Rev. C 103 (2021) 055806 [arXiv:2011.05855] [INSPIRE].
J. Keller, K. Hebeler and A. Schwenk, Nuclear Equation of State for Arbitrary Proton Fraction and Temperature Based on Chiral Effective Field Theory and a Gaussian Process Emulator, Phys. Rev. Lett. 130 (2023) 072701 [arXiv:2204.14016] [INSPIRE].
S. Elhatisari et al., Wave function matching for the quantum many-body problem, arXiv:2210.17488 [INSPIRE].
M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].
S. Forte, A. Isgrò and G. Vita, Do we need N3LO Parton Distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].
E. Bagnaschi, M. Cacciari, A. Guffanti and L. Jenniches, An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations, JHEP 02 (2015) 133 [arXiv:1409.5036] [INSPIRE].
M. Bonvini, Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders, Eur. Phys. J. C 80 (2020) 989 [arXiv:2006.16293] [INSPIRE].
C. Duhr, A. Huss, A. Mazeliauskas and R. Szafron, An analysis of Bayesian estimates for missing higher orders in perturbative calculations, JHEP 09 (2021) 122 [arXiv:2106.04585] [INSPIRE].
J. Ghiglieri, A. Kurkela, M. Strickland and A. Vuorinen, Perturbative Thermal QCD: Formalism and Applications, Phys. Rept. 880 (2020) 1 [arXiv:2002.10188] [INSPIRE].
G. Grunberg, Renormalization Group Improved Perturbative QCD, Phys. Lett. B 95 (1980) 70 [Erratum ibid. 110 (1982) 501] [INSPIRE].
P.M. Stevenson, Optimized Perturbation Theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].
S. Borsanyi et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, The pressure of hot QCD up to g6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].
J.P. Blaizot, E. Iancu and A. Rebhan, Approximately selfconsistent resummations for the thermodynamics of the quark gluon plasma. 1. Entropy and density, Phys. Rev. D 63 (2001) 065003 [hep-ph/0005003] [INSPIRE].
M. Laine and Y. Schroder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].
S. Mogliacci et al., Equation of State of hot and dense QCD: Resummed perturbation theory confronts lattice data, JHEP 12 (2013) 055 [arXiv:1307.8098] [INSPIRE].
J.O. Andersen, E. Braaten and M. Strickland, Hard thermal loop resummation of the free energy of a hot gluon plasma, Phys. Rev. Lett. 83 (1999) 2139 [hep-ph/9902327] [INSPIRE].
K. Hebeler, J.M. Lattimer, C.J. Pethick and A. Schwenk, Equation of state and neutron star properties constrained by nuclear physics and observation, Astrophys. J. 773 (2013) 11 [arXiv:1303.4662] [INSPIRE].
Acknowledgments
We thank Alexander Huss, Tore Kleppe, Jan-Terje Kvaløy, Risto Paatelainen, Saga Säppi, Achim Schwenk, and Aleksi Vuorinen for helpful discussions and comments at various stages of this project. This work is supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–project number 279384907–SFB 1245 (T.G.) and project number 496831614 (A.M.) and by the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006) (T.G.).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2303.02175
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gorda, T., Komoltsev, O., Kurkela, A. et al. Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state. J. High Energ. Phys. 2023, 2 (2023). https://doi.org/10.1007/JHEP06(2023)002
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2023)002