Abstract
The 4.2σ discrepancy between the standard model prediction for the muon anomalous magnetic moment aμ and the experimental result is accompanied by other anomalies. A crucial input for the prediction is the hadronic vacuum polarization \( {a}_{\mu}^{\mathrm{HVP}} \) inferred from σhad = σ(e+e− → hadrons) data. However, the two most accurate determinations of σhad from KLOE and BaBar disagree by almost 3 σ. Additionally, the combined data-driven result disagrees with the most precise lattice determination of \( {a}_{\mu}^{\mathrm{HVP}} \) by 2.1 σ. We show that all these discrepancies could be accounted for by a new boson produced resonantly around the KLOE centre of mass energy and decaying promptly yielding e+e− and μ+μ− pairs in the final states. This gives rise to three different effects: (i) the additional e+e− events will affect the KLOE luminosity determination based on measurements of the Bhabha cross section, and in turn the inferred value of σhad; (ii) the additional μ+μ− events will affect the determination of σhad via the (luminosity independent) measurement of the ratio of π+π−γ versus μ+μ−γ events; (iii) loops involving the new boson would contribute directly to the prediction for aμ. We discuss in detail this possibility, and we present a simple model that can reconcile the KLOE and BaBar results for σhad, the data-driven and the lattice determinations of \( {a}_{\mu}^{\mathrm{HVP}} \), the predicted and measured values of aμ, while complying with all phenomenological constraints.
References
Muon g − 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
Muon g − 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28 [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(\( {m}_Z^2 \)) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_Z^2 \)): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].
M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(\( {m}_Z^2 \)), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(\( {M}_Z^2 \)), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].
K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].
M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].
A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].
G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].
T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].
KLOE-2 collaboration, Combination of KLOE σ(e+e− → π+π−γ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2, JHEP 03 (2018) 173 [arXiv:1711.03085] [INSPIRE].
BaBar collaboration, Precise measurement of the e+e− → π+π− (gamma) cross section with the Initial State Radiation method at BABAR, Phys. Rev. Lett. 103 (2009) 231801 [arXiv:0908.3589] [INSPIRE].
CMD-2 collaboration, Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].
V.M. Aul’chenko et al., Measurement of the e+e− → π+π− cross section with the CMD-2 detector in the 370–520-MeV energy range, JETP Lett. 84 (2006) 413 [hep-ex/0610016] [INSPIRE].
CMD-2 collaboration, High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021] [INSPIRE].
M.N. Achasov et al., Update of the e+e− → π+π− cross-section measured by SND detector in the energy region 400 < s1/2 < 1000 MeV, J. Exp. Theor. Phys. 103 (2006) 380 [hep-ex/0605013] [INSPIRE].
BESIII collaboration, Measurement of the e+e− → π+π− cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [Erratum ibid. 812 (2021) 135982] [arXiv:1507.08188] [INSPIRE].
S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
A. Keshavarzi, K.S. Khaw and T. Yoshioka, Muon g − 2: A review, Nucl. Phys. B 975 (2022) 115675 [arXiv:2106.06723] [INSPIRE].
A. Gérardin, The anomalous magnetic moment of the muon: status of Lattice QCD calculations, Eur. Phys. J. A 57 (2021) 116 [arXiv:2012.03931] [INSPIRE].
A.E. Ryzhenenkov et al., Overview of the CMD-3 recent results, J. Phys. Conf. Ser. 1526 (2020) 012009 [INSPIRE].
KLOE collaboration, Measurement of σ(e+e− → π+π−γ(γ) and the dipion contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 670 (2009) 285 [arXiv:0809.3950] [INSPIRE].
KLOE collaboration, Precision measurement of σ(e+e− → π+π−γ)/σ(e+e− → μ+μ−γ) and determination of the π+π− contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 720 (2013) 336 [arXiv:1212.4524] [INSPIRE].
BaBar collaboration, Precise Measurement of the e+e− → π+π−(γ) Cross Section with the Initial-State Radiation Method at BABAR, Phys. Rev. D 86 (2012) 032013 [arXiv:1205.2228] [INSPIRE].
E. Izaguirre, G. Krnjaic and B. Shuve, Discovering Inelastic Thermal-Relic Dark Matter at Colliders, Phys. Rev. D 93 (2016) 063523 [arXiv:1508.03050] [INSPIRE].
E. Izaguirre, Y. Kahn, G. Krnjaic and M. Moschella, Testing Light Dark Matter Coannihilation With Fixed-Target Experiments, Phys. Rev. D 96 (2017) 055007 [arXiv:1703.06881] [INSPIRE].
J.R. Jordan, Y. Kahn, G. Krnjaic, M. Moschella and J. Spitz, Signatures of Pseudo-Dirac Dark Matter at High-Intensity Neutrino Experiments, Phys. Rev. D 98 (2018) 075020 [arXiv:1806.05185] [INSPIRE].
A. Berlin and F. Kling, Inelastic Dark Matter at the LHC Lifetime Frontier: ATLAS, CMS, LHCb, CODEX-b, FASER, and MATHUSLA, Phys. Rev. D 99 (2019) 015021 [arXiv:1810.01879] [INSPIRE].
KLOE collaboration, Measurement of σ(e+e− → π+π−) from threshold to 0.85 GeV2 using Initial State Radiation with the KLOE detector, Phys. Lett. B 700 (2011) 102 [arXiv:1006.5313] [INSPIRE].
KLOE collaboration, Measurement of the leptonic decay widths of the phi-meson with the KLOE detector, Phys. Lett. B 608 (2005) 199 [hep-ex/0411082] [INSPIRE].
S.J. Brodsky and E. De Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev. 168 (1968) 1620 [INSPIRE].
B.E. Lautrup and E. De Rafael, Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron, Phys. Rev. 174 (1968) 1835 [INSPIRE].
F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, vol. 274, Springer, Cham, Germany (2017) [DOI] [INSPIRE].
M. Benayoun, L. Delbuono and F. Jegerlehner, BHLS2, a New Breaking of the HLS Model and its Phenomenology, Eur. Phys. J. C 80 (2020) 81 [Erratum ibid. 80 (2020) 244] [arXiv:1903.11034] [INSPIRE].
B. Ananthanarayan, I. Caprini and D. Das, Pion electromagnetic form factor at high precision with implications to \( {a}_{\mu}^{\pi \pi} \) and the onset of perturbative QCD, Phys. Rev. D 98 (2018) 114015 [arXiv:1810.09265] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to α(\( {M}_Z^2 \)), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
M. Davier et al., The Discrepancy Between tau and e+e− Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].
M. Davier, A. Höcker, B. Malaescu, C.-Z. Yuan and Z. Zhang, Update of the ALEPH non-strange spectral functions from hadronic τ decays, Eur. Phys. J. C 74 (2014) 2803 [arXiv:1312.1501] [INSPIRE].
M. Bruno, T. Izubuchi, C. Lehner and A. Meyer, On isospin breaking in τ decays for (g − 2)μ from Lattice QCD, PoS LATTICE2018 (2018) 135 [arXiv:1811.00508] [INSPIRE].
S. Jadach et al., Event generators for Bhabha scattering, in CERN Workshop on LEP2 Physics (followed by 2nd meeting, 15–16 Jun 1995 and 3rd meeting 2–3 Nov 1995), (1996) [DOI] [hep-ph/9602393] [INSPIRE].
A.B. Arbuzov, G.V. Fedotovich, F.V. Ignatov, E.A. Kuraev and A.L. Sibidanov, Monte-Carlo generator for e+e− annihilation into lepton and hadron pairs with precise radiative corrections, Eur. Phys. J. C 46 (2006) 689 [hep-ph/0504233] [INSPIRE].
G. Balossini, C.M. Carloni Calame, G. Montagna, O. Nicrosini and F. Piccinini, Matrix elements and Parton Shower in the event generator BABAYAGA, Nucl. Phys. B Proc. Suppl. 162 (2006) 59 [hep-ph/0610022] [INSPIRE].
B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
P. Fayet, The light U boson as the mediator of a new force, coupled to a combination of Q, B, L and dark matter, Eur. Phys. J. C 77 (2017) 53 [arXiv:1611.05357] [INSPIRE].
B. Batell, J. Berger, L. Darmé and C. Frugiuele, Inelastic dark matter at the Fermilab Short Baseline Neutrino Program, Phys. Rev. D 104 (2021) 075026 [arXiv:2106.04584] [INSPIRE].
L. Darmé, S. Rao and L. Roszkowski, Light dark Higgs boson in minimal sub-GeV dark matter scenarios, JHEP 03 (2018) 084 [arXiv:1710.08430] [INSPIRE].
L. Darmé, S. Rao and L. Roszkowski, Signatures of dark Higgs boson in light fermionic dark matter scenarios, JHEP 12 (2018) 014 [arXiv:1807.10314] [INSPIRE].
G.N. Wojcik and T.G. Rizzo, Forbidden scalar dark matter and dark Higgses, JHEP 04 (2022) 033 [arXiv:2109.07369] [INSPIRE].
P. Asadi, T.R. Slatyer and J. Smirnov, WIMPs Without Weakness: Generalized Mass Window with Entropy Injection, arXiv:2111.11444 [INSPIRE].
A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].
M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].
N.D. Christensen et al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
CMD-2 collaboration, Measurement of e+e− → π+π− cross-section with CMD-2 around ρ-meson, Phys. Lett. B 527 (2002) 161 [hep-ex/0112031] [INSPIRE].
M.N. Achasov et al., Study of the process e+e− → π+π− in the energy region 400 < s1/2 < 1000 MeV, J. Exp. Theor. Phys. 101 (2005) 1053 [hep-ex/0506076] [INSPIRE].
KLOE collaboration, Measurement of the DAFNE luminosity with the KLOE detector using large angle Bhabha scattering, Eur. Phys. J. C 47 (2006) 589 [hep-ex/0604048] [INSPIRE].
BaBar collaboration, Time-Integrated Luminosity Recorded by the BABAR Detector at the PEP-II e+e− Collider, Nucl. Instrum. Meth. A 726 (2013) 203 [arXiv:1301.2703] [INSPIRE].
BESIII collaboration, Measurement of the integrated luminosities of the data taken by BESIII at \( \sqrt{s} \) = 3.650 and 3.773 GeV, Chin. Phys. C 37 (2013) 123001 [arXiv:1307.2022] [INSPIRE].
BaBar collaboration, Search for a Dark Photon in e+e− Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
BaBar collaboration, The BABAR Detector: Upgrades, Operation and Performance, Nucl. Instrum. Meth. A 729 (2013) 615 [arXiv:1305.3560] [INSPIRE].
J. Seeman et al., Status report on PEP-II performance, in 7th European Particle Accelerator Conference (EPAC 2000), Vienna, Austria, 26–30 June 2000, pp. 38–42 (2002) [INSPIRE].
BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
BaBar collaboration, Search for Production of Invisible Final States in Single-Photon Decays of Υ(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].
G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev. D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].
M. Duerr, T. Ferber, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg and P. Tunney, Invisible and displaced dark matter signatures at Belle II, JHEP 02 (2020) 039 [arXiv:1911.03176] [INSPIRE].
M. Duerr, T. Ferber, C. Garcia-Cely, C. Hearty and K. Schmidt-Hoberg, Long-lived Dark Higgs and Inelastic Dark Matter at Belle II, JHEP 04 (2021) 146 [arXiv:2012.08595] [INSPIRE].
Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
S. Dreyer et al., Physics reach of a long-lived particle detector at Belle II, arXiv:2105.12962 [INSPIRE].
χQCD collaboration, Charmed and ϕ meson decay constants from 2+1-flavor lattice QCD, Chin. Phys. C 45 (2021) 023109 [arXiv:2008.05208] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
KLOE-2 collaboration, Measurement of the running of the fine structure constant below 1 GeV with the KLOE Detector, Phys. Lett. B 767 (2017) 485 [arXiv:1609.06631] [INSPIRE].
T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Nonabelian Anomaly and Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries, Prog. Theor. Phys. 73 (1985) 926 [INSPIRE].
S. Tulin, New weakly-coupled forces hidden in low-energy QCD, Phys. Rev. D 89 (2014) 114008 [arXiv:1404.4370] [INSPIRE].
P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP 06 (2018) 004 [arXiv:1801.04847] [INSPIRE].
L. Darmé, L. Di Luzio, M. Giannotti and E. Nardi, Selective enhancement of the QCD axion couplings, Phys. Rev. D 103 (2021) 015034 [arXiv:2010.15846] [INSPIRE].
ETM collaboration, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev. D 80 (2009) 054510 [arXiv:0906.4720] [INSPIRE].
HPQCD collaboration, Vcs from Ds → ϕℓν semileptonic decay and full lattice QCD, Phys. Rev. D 90 (2014) 074506 [arXiv:1311.6669] [INSPIRE].
A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g − 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic Vacuum Polarization: (g − 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].
G. Voutsinas, E. Perez, M. Dam and P. Janot, Beam-beam effects on the luminosity measurement at LEP and the number of light neutrino species, Phys. Lett. B 800 (2020) 135068 [arXiv:1908.01704] [INSPIRE].
ALEPH, DELPHI, L3, OPAL and SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
P. Janot and S. Jadach, Improved Bhabha cross section at LEP and the number of light neutrino species, Phys. Lett. B 803 (2020) 135319 [arXiv:1912.02067] [INSPIRE].
A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].
D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].
C.M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g − 2, Phys. Lett. B 746 (2015) 325 [arXiv:1504.02228] [INSPIRE].
G. Abbiendi et al., Measuring the leading hadronic contribution to the muon g − 2 via μe scattering, Eur. Phys. J. C 77 (2017) 139 [arXiv:1609.08987] [INSPIRE].
G. Abbiendi, Letter of Intent: the MUonE project, CERN-SPSC-2019-026, SPSC-I-252 (2019).
MUonE collaboration, Status of the MUonE experiment, PoS ICHEP2020 (2021) 223 [arXiv:2012.07016] [INSPIRE].
L. Di Luzio, A. Masiero, P. Paradisi and M. Passera, New physics behind the new muon g − 2 puzzle?, Phys. Lett. B 829 (2022) 137037 [arXiv:2112.08312] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.09139
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Darmé, L., di Cortona, G.G. & Nardi, E. The muon g − 2 anomaly confronts new physics in e± and μ± final states scattering. J. High Energ. Phys. 2022, 122 (2022). https://doi.org/10.1007/JHEP06(2022)122
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)122
Keywords
- New Light Particles
- Specific BSM Phenomenology
- New Gauge Interactions