Skip to main content

Advertisement

SpringerLink
Higher-order EW corrections in ZZ and ZZj production at the LHC
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 June 2022

Higher-order EW corrections in ZZ and ZZj production at the LHC

  • Enrico Bothmann1,
  • Davide Napoletano2,
  • Marek Schönherr  ORCID: orcid.org/0000-0002-2274-61753,
  • Steffen Schumann1 &
  • …
  • Simon Luca Villani1 

Journal of High Energy Physics volume 2022, Article number: 64 (2022) Cite this article

  • 76 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We consider the production of a pair of Z bosons at the LHC and study the inclusion of EW corrections in theoretical predictions at fixed order and based on multijet-merged parton-shower simulations. To this end we present exact NLO EW results for pp → e+e−μ+μ−, and, for the first time, for pp → e+e−μ+μ−j, and compare them to the EW virtual and NLL Sudakov approximation. We then match the exact NLO EW result to the resummed Sudakov logarithms to achieve an improved \( \mathrm{NLO}\ \mathrm{EW}+\mathrm{NLL}\ {\mathrm{EW}}_{\mathrm{sud}}^{\mathrm{exp}} \) result.

Further, we discuss the inclusion of the above EW corrections in MePs@Nlo event simulations in the framework of the Sherpa event generator. We present detailed phenomenological predictions for inclusive ZZ and ZZj production taking into account the dominant EW corrections through the EW virtual approximation, as well as through (exponentiated) EW Sudakov logarithms.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C 82 (2022) 428 [arXiv:2109.02653] [INSPIRE].

  2. A. Denner and S. Dittmaier, Electroweak Radiative Corrections for Collider Physics, Phys. Rept. 864 (2020) 1 [arXiv:1912.06823] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. Cullen et al., GoSaM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].

    Article  ADS  Google Scholar 

  4. V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H. S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [Erratum ibid. 11 (2021) 085] [arXiv:1804.10017] [INSPIRE].

  6. J. M. Campbell, D. Wackeroth and J. Zhou, Study of weak corrections to Drell-Yan, top-quark pair, and dijet production at high energies with MCFM, Phys. Rev. D 94 (2016) 093009 [arXiv:1608.03356] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Honeywell, S. Quackenbush, L. Reina and C. Reuschle, NLOX, a one-loop provider for Standard Model processes, Comput. Phys. Commun. 257 (2020) 107284 [arXiv:1812.11925] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. F. Buccioni et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866 [arXiv:1907.13071] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  11. S. Catani, S. Dittmaier, M. H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. T. Gehrmann and N. Greiner, Photon Radiation with MadDipole, JHEP 12 (2010) 050 [arXiv:1011.0321] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. M. Schönherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C 78 (2018) 119 [arXiv:1712.07975] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].

    Article  Google Scholar 

  20. A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Granata, J. M. Lindert, C. Oleari and S. Pozzorini, NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects, JHEP 09 (2017) 012 [arXiv:1706.03522] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Chiesa, N. Greiner, M. Schönherr and F. Tramontano, Electroweak corrections to diphoton plus jets, JHEP 10 (2017) 181 [arXiv:1706.09022] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Greiner and M. Schönherr, NLO QCD+EW corrections to diphoton production in association with a vector boson, JHEP 01 (2018) 079 [arXiv:1710.11514] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Schönherr, Next-to-leading order electroweak corrections to off-shell WWW production at the LHC, JHEP 07 (2018) 076 [arXiv:1806.00307] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen and C. Schwan, QCD and electroweak corrections to WZ scattering at the LHC, JHEP 06 (2019) 067 [arXiv:1904.00882] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Dittmaier, G. Knippen and C. Schwan, Next-to-leading-order QCD and electroweak corrections to triple-W production with leptonic decays at the LHC, JHEP 02 (2020) 003 [arXiv:1912.04117] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Pagani, I. Tsinikos and E. Vryonidou, NLO QCD+EW predictions for tHj and tZj production at the LHC, JHEP 08 (2020) 082 [arXiv:2006.10086] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Pagani, H.-S. Shao, I. Tsinikos and M. Zaro, Automated EW corrections with isolated photons: \( t\overline{t}\gamma \), \( t\overline{t}\gamma \gamma \) and tγj as case studies, JHEP 09 (2021) 155 [arXiv:2106.02059] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, The complete NLO corrections to dijet hadroproduction, JHEP 04 (2017) 076 [arXiv:1612.06548] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Reyer, M. Schönherr and S. Schumann, Full NLO corrections to 3-jet production and R32 at the LHC, Eur. Phys. J. C 79 (2019) 321 [arXiv:1902.01763] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to W+ W+ scattering and its irreducible background at the LHC, JHEP 10 (2017) 124 [arXiv:1708.00268] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Denner, R. Franken, M. Pellen and T. Schmidt, NLO QCD and EW corrections to vector-boson scattering into ZZ at the LHC, JHEP 11 (2020) 110 [arXiv:2009.00411] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Denner, R. Franken, M. Pellen and T. Schmidt, Full NLO predictions for vector-boson scattering into Z bosons and its irreducible background at the LHC, JHEP 10 (2021) 228 [arXiv:2107.10688] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  37. Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  38. A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  39. V. V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C 21 (2001) 63 [hep-ph/0104127] [INSPIRE].

  43. M. Chiesa et al., Electroweak Sudakov Corrections to New Physics Searches at the LHC, Phys. Rev. Lett. 111 (2013) 121801 [arXiv:1305.6837] [INSPIRE].

    Article  ADS  Google Scholar 

  44. E. Bothmann and D. Napoletano, Automated evaluation of electroweak Sudakov logarithms in Sherpa, Eur. Phys. J. C 80 (2020) 1024 [arXiv:2006.14635] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D. Pagani and M. Zaro, One-loop electroweak Sudakov logarithms: a revisitation and automation, JHEP 02 (2022) 161 [arXiv:2110.03714] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Kallweit, J. M. Lindert, P. Maierhofer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].

    ADS  Google Scholar 

  47. F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Heinrich, S. Jahn, S. P. Jones, M. Kerner and J. Pires, NNLO predictions for Z-boson pair production at the LHC, JHEP 03 (2018) 142 [arXiv:1710.06294] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Kallweit and M. Wiesemann, ZZ production at the LHC: NNLO predictions for 2ℓ2ν and 4ℓ signatures, Phys. Lett. B 786 (2018) 382 [arXiv:1806.05941] [INSPIRE].

    Article  ADS  Google Scholar 

  51. B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to pp → μ+ μ− e+ e− + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].

    Article  ADS  Google Scholar 

  52. B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jager, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, JHEP 01 (2017) 033 [arXiv:1611.05338] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Kallweit, J. M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 2ℓ2ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Chiesa, A. Denner and J.-N. Lang, Anomalous triple-gauge-boson interactions in vector-boson pair production with RECOLA2, Eur. Phys. J. C 78 (2018) 467 [arXiv:1804.01477] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Grazzini, S. Kallweit, J. M. Lindert, S. Pozzorini and M. Wiesemann, NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production, JHEP 02 (2020) 087 [arXiv:1912.00068] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W+W-, WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    Article  ADS  Google Scholar 

  57. R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Chiesa, C. Oleari and E. Re, NLO QCD+NLO EW corrections to diboson production matched to parton shower, Eur. Phys. J. C 80 (2020) 849 [arXiv:2005.12146] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Alioli et al., Next-to-next-to-leading order event generation for Z boson pair production matched to parton shower, Phys. Lett. B 818 (2021) 136380 [arXiv:2103.01214] [INSPIRE].

    Article  Google Scholar 

  60. S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, J. R. Walsh and S. Zuberi, Matching Fully Differential NNLO Calculations and Parton Showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann and J. R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Alioli, C. W. Bauer, S. Guns and F. J. Tackmann, Underlying event sensitive observables in Drell-Yan production using GENEVA, Eur. Phys. J. C 76 (2016) 614 [arXiv:1605.07192] [INSPIRE].

    Article  ADS  Google Scholar 

  64. L. Buonocore, G. Koole, D. Lombardi, L. Rottoli, M. Wiesemann and G. Zanderighi, ZZ production at nNNLO+PS with MiNNLOPS, JHEP 01 (2022) 072 [arXiv:2108.05337] [INSPIRE].

    Article  ADS  Google Scholar 

  65. P. F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, MiNNLOP S : a new method to match NNLO QCD to parton showers, JHEP 05 (2020) 143 [arXiv:1908.06987] [INSPIRE].

    Article  ADS  Google Scholar 

  66. F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Grazzini, S. Kallweit, M. Wiesemann and J. Y. Yook, Z Z production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel, JHEP 03 (2019) 070 [arXiv:1811.09593] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Grazzini, S. Kallweit, M. Wiesemann and J. Y. Yook, Four lepton production in gluon fusion: off-shell Higgs effects in NLO QCD, Phys. Lett. B 819 (2021) 136465 [arXiv:2102.08344] [INSPIRE].

    Article  Google Scholar 

  70. S. Alioli, F. Caola, G. Luisoni and R. Röntsch, ZZ production in gluon fusion at NLO matched to parton-shower, Phys. Rev. D 95 (2017) 034042 [arXiv:1609.09719] [INSPIRE].

    Article  ADS  Google Scholar 

  71. S. Alioli, S. Ferrario Ravasio, J. M. Lindert and R. Röntsch, Four-lepton production in gluon fusion at NLO matched to parton showers, Eur. Phys. J. C 81 (2021) 687 [arXiv:2102.07783] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for gg → v1 v2 → 4 leptons, arXiv:1503.08835.

  73. B. Agarwal, S. P. Jones and A. von Manteuffel, Two-loop helicity amplitudes for gg → ZZ with full top-quark mass effects, JHEP 05 (2021) 256 [arXiv:2011.15113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. ATLAS collaboration, ZZ → ℓ+ ℓ− ℓ′+ £′− cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 032005 [arXiv:1709.07703] [INSPIRE].

  75. ATLAS collaboration, Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector, JHEP 04 (2019) 048 [arXiv:1902.05892] [INSPIRE].

  76. ATLAS collaboration, Measurement of ZZ production in the ℓℓνν final state with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 10 (2019) 127 [arXiv:1905.07163] [INSPIRE].

  77. ATLAS collaboration, Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector, JHEP 07 (2021) 005 [arXiv:2103.01918] [INSPIRE].

  78. CMS collaboration, Measurement of the ZZ production cross section and Z → ℓ+ ℓ− ℓ′+ ℓ′− branching fraction in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 763 (2016) 280 [Erratum ibid. 772 (2017) 884] [arXiv:1607.08834] [INSPIRE].

  79. CMS collaboration, Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 165 [Erratum ibid. 78 (2018) 515] [arXiv:1709.08601] [INSPIRE].

  80. CMS collaboration, Measurement of differential cross sections for Z boson pair production in association with jets at \( \sqrt{s} \) = 8 and 13 TeV, Phys. Lett. B 789 (2019) 19 [arXiv:1806.11073] [INSPIRE].

  81. CMS collaboration, Measurements of the electroweak diboson production cross sections in proton-proton collisions at \( \sqrt{s} \) = 5.02 TeV using leptonic decays, Phys. Rev. Lett. 127 (2021) 191801 [arXiv:2107.01137] [INSPIRE].

  82. V. S. Fadin, L. N. Lipatov, A. D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].

    Article  ADS  Google Scholar 

  83. M. Melles, Electroweak radiative corrections in high-energy processes, Phys. Rept. 375 (2003) 219 [hep-ph/0104232] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Melles, Resummation of angular dependent corrections in spontaneously broken gauge theories, Eur. Phys. J. C 24 (2002) 193 [hep-ph/0108221] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J.-y. Chiu, F. Golf, R. Kelley and A. V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J.-y. Chiu, F. Golf, R. Kelley and A. V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J.-y. Chiu, R. Kelley and A. V. Manohar, Electroweak Corrections using Effective Field Theory: Applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [INSPIRE].

    Article  ADS  Google Scholar 

  88. J.-y. Chiu, A. Fuhrer, R. Kelley and A. V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    Article  ADS  Google Scholar 

  89. J.-y. Chiu, A. Fuhrer, R. Kelley and A. V. Manohar, Soft and Collinear Functions for the Standard Model, Phys. Rev. D 81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].

    Article  ADS  Google Scholar 

  90. A. Fuhrer, A. V. Manohar, J.-y. Chiu and R. Kelley, Radiative Corrections to Longitudinal and Transverse Gauge Boson and Higgs Production, Phys. Rev. D 81 (2010) 093005 [arXiv:1003.0025] [INSPIRE].

    Article  ADS  Google Scholar 

  91. D. R. Yennie, S. C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Schonherr and F. Krauss, Soft Photon Radiation in Particle Decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. M. Lindert et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C 77 (2017) 829 [arXiv:1705.04664] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  ADS  Google Scholar 

  95. S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  96. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    Article  ADS  Google Scholar 

  97. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  98. T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e+ e− → hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    Article  ADS  Google Scholar 

  99. S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].

    Article  ADS  Google Scholar 

  100. S. Hoeche, F. Krauss, S. Pozzorini, M. Schoenherr, J. M. Thompson and K. C. Zapp, Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].

    Article  ADS  Google Scholar 

  101. K. Danziger, S. Höche and F. Siegert, Reducing negative weights in Monte Carlo event generation with Sherpa, arXiv:2110.15211 [INSPIRE].

  102. C. Gütschow, J. M. Lindert and M. Schönherr, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J. C 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].

    Article  ADS  Google Scholar 

  103. F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].

    Article  ADS  Google Scholar 

  104. D. Goncalves, F. Krauss, S. Kuttimalai and P. Maierhöfer, Boosting invisible searches via ZH: From the Higgs boson to dark matter simplified models, Phys. Rev. D 94 (2016) 053014 [arXiv:1605.08039] [INSPIRE].

    Article  ADS  Google Scholar 

  105. S. Bräuer, A. Denner, M. Pellen, M. Schönherr and S. Schumann, Fixed-order and merged parton-shower predictions for WW and WWj production at the LHC including NLO QCD and EW corrections, JHEP 10 (2020) 159 [arXiv:2005.12128] [INSPIRE].

    Article  ADS  Google Scholar 

  106. F. Krauss, J. M. Lindert, R. Linten and M. Schönherr, Accurate simulation of W, Z and Higgs boson decays in Sherpa, Eur. Phys. J. C 79 (2019) 143 [arXiv:1809.10650] [INSPIRE].

    Article  ADS  Google Scholar 

  107. C. Gütschow and M. Schönherr, Four lepton production and the accuracy of QED FSR, Eur. Phys. J. C 81 (2021) 48 [arXiv:2007.15360] [INSPIRE].

    Article  ADS  Google Scholar 

  108. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  109. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J. M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

    Article  ADS  Google Scholar 

  110. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  111. G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  112. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  113. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

  114. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    Article  ADS  Google Scholar 

  115. J. Bendavid et all, Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1803.07977.

  116. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  117. C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].

    Article  ADS  Google Scholar 

  118. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  119. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].

  120. D. Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy Dependent Width Effects in e+ e− Annihilation Near the Z Boson Pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    Article  ADS  Google Scholar 

  121. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+ e− → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    Article  ADS  Google Scholar 

  122. A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. B Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].

    Article  ADS  Google Scholar 

  123. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e+ e− → WW → 4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    Article  ADS  Google Scholar 

  124. S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    Article  ADS  Google Scholar 

  125. M. Chiesa, F. Piccinini and A. Vicini, Direct determination of \( {\sin}^2{\theta}_{\mathrm{eff}}^{\mathrm{\ell}} \) at hadron colliders, Phys. Rev. D 100 (2019) 071302 [arXiv:1906.11569] [INSPIRE].

    Article  ADS  Google Scholar 

  126. I. Brivio et al., Electroweak input parameters, arXiv:2111.12515 [INSPIRE].

  127. NNPDF collaboration, Illuminating the photon content of the proton within a global PDF analysis, SciPost Phys. 5 (2018) 008 [arXiv:1712.07053] [INSPIRE].

  128. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  129. A. Manohar, P. Nason, G. P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].

    Article  ADS  Google Scholar 

  130. M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  131. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+ jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].

    Article  ADS  Google Scholar 

  132. S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    Article  ADS  Google Scholar 

  133. M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, The \( t\overline{t} \) cross-section at 1.8 TeV and 1.96 TeV: A Study of the systematics due to parton densities and scale dependence, JHEP 04 (2004) 068 [hep-ph/0303085] [INSPIRE].

    Article  ADS  Google Scholar 

  134. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    Article  ADS  Google Scholar 

  135. J. H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, One-loop weak corrections to hadronic production of Z bosons at large transverse momenta, Nucl. Phys. B 727 (2005) 368 [hep-ph/0507178] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany

    Enrico Bothmann, Steffen Schumann & Simon Luca Villani

  2. Universitá degli Studi di Milano-Bicocca and INFN, Piazza della Scienza 3, 20126, Milano, Italy

    Davide Napoletano

  3. Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DH1 3LE, U.K.

    Marek Schönherr

Authors
  1. Enrico Bothmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Davide Napoletano
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Marek Schönherr
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Steffen Schumann
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Simon Luca Villani
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marek Schönherr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2111.13453

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bothmann, E., Napoletano, D., Schönherr, M. et al. Higher-order EW corrections in ZZ and ZZj production at the LHC. J. High Energ. Phys. 2022, 64 (2022). https://doi.org/10.1007/JHEP06(2022)064

Download citation

  • Received: 06 December 2021

  • Revised: 31 March 2022

  • Accepted: 11 May 2022

  • Published: 13 June 2022

  • DOI: https://doi.org/10.1007/JHEP06(2022)064

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.