Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Gravitational waves from an inflation triggered first-order phase transition

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 June 2022
  • Volume 2022, article number 50, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Gravitational waves from an inflation triggered first-order phase transition
Download PDF
  • Haipeng An1,2,3,
  • Kun-Feng Lyu  ORCID: orcid.org/0000-0002-3291-17014,5,
  • Lian-Tao Wang6,7 &
  • …
  • Siyi Zhou  ORCID: orcid.org/0000-0001-8982-07238 
  • 710 Accesses

  • 18 Citations

  • 8 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Large excursion of the inflaton field can trigger interesting dynamics. One important example is a first-order phase transition in a spectator sector which couples to the inflaton. Gravitational waves (GWs) from such a first-order phase transition during inflation, an example of an instantaneous source, have an oscillatory feature. In this work, we show that this feature is generic for a source in an era of accelerated expansion. We also demonstrate that the shape of the GW signal contains information about the evolution of the early universe following the phase transition. In particular, the slope of the infrared part of the GW spectrum is sensitive to the evolution of the Hubble parameter when the GW modes reenter the horizon after inflation. The slope of the profile of the intermediate oscillatory part and the ultraviolet part of the GW spectrum depend on the evolution of the Hubble parameter when the modes exit horizon during the inflation and when they reenter the horizon during the reheating. The ultraviolet spectrum also depends on the details of the dynamics of the phase transition. We consider the GW signal in several models of evolution during and after inflation, and compare them with the minimal scenario of quasi- de Sitter inflation followed by radiation domination after a fast reheating, and demonstrate that the shape of the GW can be used to distinguish them. In this way, the GW signal considered in this paper offers a powerful probe to the dynamics of the early universe which is otherwise difficult to explore directly through CMB, large scale structure, big bang nucleosynthesis (BBN), and other well-studied cosmological observables.

Article PDF

Download to read the full article text

Similar content being viewed by others

From Hubble to Bubble

Article Open access 13 November 2023

Imprints of a supercooled phase transition in the gravitational wave spectrum from a cosmic string network

Article Open access 06 September 2023

Crescendo beyond the horizon: more gravitational waves from domain walls bounded by inflated cosmic strings

Article Open access 06 November 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Astrophysics
  • Cosmology
  • Early Universe
  • General Relativity
  • Gravitational Physics
  • Physical Sciences
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

  2. A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

  3. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

  4. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  5. H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H. Jiang, T. Liu, S. Sun and Y. Wang, Echoes of Inflationary First-Order Phase Transitions in the CMB, Phys. Lett. B 765 (2017) 339 [arXiv:1512.07538] [INSPIRE].

    Article  ADS  Google Scholar 

  7. K. Sugimura, D. Yamauchi and M. Sasaki, Multi-field open inflation model and multi-field dynamics in tunneling, JCAP 01 (2012) 027 [arXiv:1110.4773] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Ashoorioon, Exit from Inflation with a First-Order Phase Transition and a Gravitational Wave Blast, Phys. Lett. B 747 (2015) 446 [arXiv:1502.00556] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Ashoorioon, A. Rostami and J.T. Firouzjaee, Examining the end of inflation with primordial black holes mass distribution and gravitational waves, Phys. Rev. D 103 (2021) 123512 [arXiv:2012.02817] [INSPIRE].

  10. A. Ashoorioon, K. Rezazadeh and A. Rostami, NANOGrav Signal from the End of Inflation and the LIGO Mass and Heavier Primordial Black Holes, arXiv:2202.01131 [INSPIRE].

  11. Y.-T. Wang, Y. Cai and Y.-S. Piao, Phase-transition sound of inflation at gravitational waves detectors, Phys. Lett. B 789 (2019) 191 [arXiv:1801.03639] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. An, K.-F. Lyu, L.-T. Wang and S. Zhou, A unique gravitational wave signal from phase transition during inflation, arXiv:2009.12381 [INSPIRE].

  13. eLISA collaboration, The Gravitational Universe, arXiv:1305.5720 [INSPIRE].

  14. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  15. S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011 [INSPIRE].

  16. TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE].

  17. W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Crowder and N.J. Cornish, Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].

  19. G.M. Harry, P. Fritschel, D.A. Shaddock, W. Folkner and E.S. Phinney, Laser interferometry for the big bang observer, Class. Quant. Grav. 23 (2006) 4887 [Erratum ibid. 23 (2006) 7361] [INSPIRE].

  20. V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].

  21. M. Krämer and D.J. Champion, The European Pulsar Timing Array and the Large European Array for Pulsars, Class. Quant. Grav. 30 (2013) 224009 [INSPIRE].

  22. G. Hobbs et al., The international pulsar timing array project: using pulsars as a gravitational wave detector, Class. Quant. Grav. 27 (2010) 084013 [arXiv:0911.5206] [INSPIRE].

  23. G. Janssen et al., Gravitational wave astronomy with the SKA, PoS AASKA14 (2015) 037 [arXiv:1501.00127] [INSPIRE].

  24. LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [arXiv:1411.4547] [INSPIRE].

  25. A. Abramovici et al., LIGO: The Laser interferometer gravitational wave observatory, Science 256 (1992) 325 [INSPIRE].

  26. VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001 [arXiv:1408.3978] [INSPIRE].

  27. M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002 [INSPIRE].

  28. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833] [INSPIRE].

  29. A. Hook, G. Marques-Tavares and D. Racco, Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe, JHEP 02 (2021) 117 [arXiv:2010.03568] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. Fumagalli, G.A. Palma, S. Renaux-Petel, S. Sypsas, L.T. Witkowski and C. Zenteno, Primordial gravitational waves from excited states, JHEP 03 (2022) 196 [arXiv:2111.14664] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. Mandic, S. Bird and I. Cholis, Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers, Phys. Rev. Lett. 117 (2016) 201102 [arXiv:1608.06699] [INSPIRE].

  32. S. Clesse and J. García-Bellido, Detecting the gravitational wave background from primordial black hole dark matter, Phys. Dark Univ. 18 (2017) 105 [arXiv:1610.08479] [INSPIRE].

    Article  Google Scholar 

  33. S. Wang, Y.-F. Wang, Q.-G. Huang and T.G.F. Li, Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120 (2018) 191102 [arXiv:1610.08725] [INSPIRE].

  34. M. Raidal, V. Vaskonen and H. Veermäe, Gravitational Waves from Primordial Black Hole Mergers, JCAP 09 (2017) 037 [arXiv:1707.01480] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. J. García-Bellido, M. Peloso and C. Unal, Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter, JCAP 09 (2017) 013 [arXiv:1707.02441] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H.-K. Guo, J. Shu and Y. Zhao, Using LISA-like Gravitational Wave Detectors to Search for Primordial Black Holes, Phys. Rev. D 99 (2019) 023001 [arXiv:1709.03500] [INSPIRE].

  37. S.Y. Khlebnikov and I.I. Tkachev, Relic gravitational waves produced after preheating, Phys. Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].

  38. R. Easther, J.T. Giblin Jr. and E.A. Lim, Gravitational Wave Production At The End Of Inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294] [INSPIRE].

  39. J. García-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].

  40. J. García-Bellido, D.G. Figueroa and A. Sastre, A Gravitational Wave Background from Reheating after Hybrid Inflation, Phys. Rev. D 77 (2008) 043517 [arXiv:0707.0839] [INSPIRE].

  41. J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, Theory and Numerics of Gravitational Waves from Preheating after Inflation, Phys. Rev. D 76 (2007) 123517 [arXiv:0707.0875] [INSPIRE].

  42. T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE].

  43. R.H. Brandenberger, A. Albrecht and N. Turok, Gravitational Radiation From Cosmic Strings and the Microwave Background, Nucl. Phys. B 277 (1986) 605 [INSPIRE].

  44. M. Hindmarsh, Gravitational radiation from kinky infinite strings, Phys. Lett. B 251 (1990) 28 [INSPIRE].

  45. T. Damour and A. Vilenkin, Gravitational wave bursts from cusps and kinks on cosmic strings, Phys. Rev. D 64 (2001) 064008 [gr-qc/0104026] [INSPIRE].

  46. X. Siemens and K.D. Olum, Gravitational radiation and the small-scale structure of cosmic strings, Nucl. Phys. B 611 (2001) 125 [Erratum ibid. 645 (2002) 367] [gr-qc/0104085] [INSPIRE].

  47. M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [INSPIRE].

  48. R. Durrer, P.G. Ferreira and T. Kahniashvili, Tensor microwave anisotropies from a stochastic magnetic field, Phys. Rev. D 61 (2000) 043001 [astro-ph/9911040] [INSPIRE].

  49. C. Caprini and R. Durrer, Gravitational wave production: A Strong constraint on primordial magnetic fields, Phys. Rev. D 65 (2001) 023517 [astro-ph/0106244] [INSPIRE].

  50. L. Pogosian, T. Vachaspati and S. Winitzki, Signatures of kinetic and magnetic helicity in the CMBR, Phys. Rev. D 65 (2002) 083502 [astro-ph/0112536] [INSPIRE].

  51. C. Caprini, R. Durrer and T. Kahniashvili, The Cosmic microwave background and helical magnetic fields: The Tensor mode, Phys. Rev. D 69 (2004) 063006 [astro-ph/0304556] [INSPIRE].

  52. C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476] [INSPIRE].

  53. C. Caprini, R. Durrer and E. Fenu, Can the observed large scale magnetic fields be seeded by helical primordial fields?, JCAP 11 (2009) 001 [arXiv:0906.4976] [INSPIRE].

    ADS  Google Scholar 

  54. J.R. Shaw and A. Lewis, Massive Neutrinos and Magnetic Fields in the Early Universe, Phys. Rev. D 81 (2010) 043517 [arXiv:0911.2714] [INSPIRE].

  55. S. Saga, H. Tashiro and S. Yokoyama, Limits on primordial magnetic fields from direct detection experiments of gravitational wave background, Phys. Rev. D 98 (2018) 083518 [arXiv:1807.00561] [INSPIRE].

  56. L.P. Grishchuk, Amplification of gravitational waves in an istropic universe, Sov. Phys. JETP 40 (1975) 409 [Zh. Eksp. Teor. Fiz. 67 (1974) 825] [INSPIRE].

  57. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].

  58. V.A. Rubakov, M.V. Sazhin and A.V. Veryaskin, Graviton Creation in the Inflationary Universe and the Grand Unification Scale, Phys. Lett. B 115 (1982) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Fabbri and M.d. Pollock, The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation, Phys. Lett. B 125 (1983) 445 [INSPIRE].

  60. L.F. Abbott and M.B. Wise, Constraints on Generalized Inflationary Cosmologies, Nucl. Phys. B 244 (1984) 541 [INSPIRE].

  61. G. Ballesteros, J. Rey, M. Taoso and A. Urbano, Primordial black holes as dark matter and gravitational waves from single-field polynomial inflation, JCAP 07 (2020) 025 [arXiv:2001.08220] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. N. Bhaumik and R.K. Jain, Primordial black holes dark matter from inflection point models of inflation and the effects of reheating, JCAP 01 (2020) 037 [arXiv:1907.04125] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. N. Bhaumik and R.K. Jain, Small scale induced gravitational waves from primordial black holes, a stringent lower mass bound, and the imprints of an early matter to radiation transition, Phys. Rev. D 104 (2021) 023531 [arXiv:2009.10424] [INSPIRE].

  64. H.V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation, Phys. Rev. D 103 (2021) 083510 [arXiv:2008.12202] [INSPIRE].

  65. J. Lin, Q. Gao, Y. Gong, Y. Lu, C. Zhang and F. Zhang, Primordial black holes and secondary gravitational waves from k and G inflation, Phys. Rev. D 101 (2020) 103515 [arXiv:2001.05909] [INSPIRE].

  66. Z. Yi, Q. Gao, Y. Gong and Z.-h. Zhu, Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term, Phys. Rev. D 103 (2021) 063534 [arXiv:2011.10606] [INSPIRE].

  67. F. Zhang, Y. Gong, J. Lin, Y. Lu and Z. Yi, Primordial non-Gaussianity from G-inflation, JCAP 04 (2021) 045 [arXiv:2012.06960] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [Erratum ibid. 86 (2012) 069901] [arXiv:1109.0022] [INSPIRE].

  69. N. Barnaby, E. Pajer and M. Peloso, Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers, Phys. Rev. D 85 (2012) 023525 [arXiv:1110.3327] [INSPIRE].

  70. R. Namba, M. Peloso, M. Shiraishi, L. Sorbo and C. Unal, Scale-dependent gravitational waves from a rolling axion, JCAP 01 (2016) 041 [arXiv:1509.07521] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. J. García-Bellido, M. Peloso and C. Unal, Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP 12 (2016) 031 [arXiv:1610.03763] [INSPIRE].

    Article  ADS  Google Scholar 

  72. O. Özsoy, Synthetic Gravitational Waves from a Rolling Axion Monodromy, JCAP 04 (2021) 040 [arXiv:2005.10280] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. O. Özsoy and Z. Lalak, Primordial black holes as dark matter and gravitational waves from bumpy axion inflation, JCAP 01 (2021) 040 [arXiv:2008.07549] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. L.T. Witkowski, G. Domènech, J. Fumagalli and S. Renaux-Petel, Expansion history-dependent oscillations in the scalar-induced gravitational wave background, JCAP 05 (2022) 028 [arXiv:2110.09480] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. J. Fumagalli, M. Pieroni, S. Renaux-Petel and L.T. Witkowski, Detecting primordial features with LISA, arXiv:2112.06903 [INSPIRE].

  76. J. Fumagalli, S. Renaux-Petel and L.T. Witkowski, Oscillations in the stochastic gravitational wave background from sharp features and particle production during inflation, JCAP 08 (2021) 030 [arXiv:2012.02761] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Braglia, X. Chen and D.K. Hazra, Probing Primordial Features with the Stochastic Gravitational Wave Background, JCAP 03 (2021) 005 [arXiv:2012.05821] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. I. Dalianis and C. Kouvaris, Gravitational waves from density perturbations in an early matter domination era, JCAP 07 (2021) 046 [arXiv:2012.09255] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. R.-G. Cai, S. Pi and M. Sasaki, Universal infrared scaling of gravitational wave background spectra, Phys. Rev. D 102 (2020) 083528 [arXiv:1909.13728] [INSPIRE].

  80. S.J. Huber and T. Konstandin, Gravitational Wave Production by Collisions: More Bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Cutting, M. Hindmarsh and D.J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97 (2018) 123513 [arXiv:1802.05712] [INSPIRE].

  82. O. Gould, J. Kozaczuk, L. Niemi, M.J. Ramsey-Musolf, T.V.I. Tenkanen and D.J. Weir, Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition, Phys. Rev. D 100 (2019) 115024 [arXiv:1903.11604] [INSPIRE].

  83. C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  84. C. Caprini, R. Durrer, T. Konstandin and G. Servant, General Properties of the Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79 (2009) 083519 [arXiv:0901.1661] [INSPIRE].

  85. C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach, Phys. Rev. D 77 (2008) 124015 [arXiv:0711.2593] [INSPIRE].

  86. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, New York, NY, U.S.A. (1972).

    Google Scholar 

  87. A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].

  88. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

  89. D.J. Weir, Revisiting the envelope approximation: gravitational waves from bubble collisions, Phys. Rev. D 93 (2016) 124037 [arXiv:1604.08429] [INSPIRE].

  90. D. Cutting, E.G. Escartin, M. Hindmarsh and D.J. Weir, Gravitational waves from vacuum first order phase transitions II: from thin to thick walls, Phys. Rev. D 103 (2021) 023531 [arXiv:2005.13537] [INSPIRE].

  91. H. Zhong, B. Gong and T. Qiu, Gravitational waves from bubble collisions in FLRW spacetime, arXiv:2107.01845 [INSPIRE].

  92. T. Konstandin, Gravitational radiation from a bulk flow model, JCAP 03 (2018) 047 [arXiv:1712.06869] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. Ellis, M. Lewicki and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11 (2020) 020 [arXiv:2007.15586] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  94. M. Lewicki and V. Vaskonen, Gravitational wave spectra from strongly supercooled phase transitions, Eur. Phys. J. C 80 (2020) 1003 [arXiv:2007.04967] [INSPIRE].

    Article  ADS  Google Scholar 

  95. M. Lewicki and V. Vaskonen, Gravitational waves from colliding vacuum bubbles in gauge theories, Eur. Phys. J. C 81 (2021) 437 [Erratum ibid. 81 (2021) 1077] [arXiv:2012.07826] [INSPIRE].

  96. F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev. D 32 (1985) 1316 [INSPIRE].

  97. T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

  98. A. Vilenkin, String Dominated Universe, Phys. Rev. Lett. 53 (1984) 1016 [INSPIRE].

  99. A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

  100. J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].

  101. M. Gleiser and R. Roberts, Gravitational waves from collapsing vacuum domains, Phys. Rev. Lett. 81 (1998) 5497 [astro-ph/9807260] [INSPIRE].

  102. B. Spokoiny, Deflationary universe scenario, Phys. Lett. B 315 (1993) 40 [gr-qc/9306008] [INSPIRE].

  103. P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev. D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].

  104. G. Harry, The Big Bang Observer, https://dcc.ligo.org/public/0002/G0900426/001/G0900426-v1.pdf (2009).

  105. C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav. 32 (2015) 015014 [arXiv:1408.0740] [INSPIRE].

  106. Y. Gouttenoire, G. Servant and P. Simakachorn, Kination cosmology from scalar fields and gravitational-wave signatures, arXiv:2111.01150 [INSPIRE].

  107. C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

    Article  ADS  Google Scholar 

  108. S. Pi, M. Sasaki and Y.-l. Zhang, Primordial Tensor Perturbation in Double Inflationary Scenario with a Break, JCAP 06 (2019) 049 [arXiv:1904.06304] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Tsinghua University, Beijing, 100084, P.R. China

    Haipeng An

  2. Center for High Energy Physics, Tsinghua University, Beijing, 100084, P.R. China

    Haipeng An

  3. Center for High Energy Physics, Peking University, Beijing, 100871, P.R. China

    Haipeng An

  4. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA

    Kun-Feng Lyu

  5. Department of Physics, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R., P.R. China

    Kun-Feng Lyu

  6. Enrico Fermi Institute, University of Chicago, Chicago, IL, 60637, USA

    Lian-Tao Wang

  7. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL, 60637, USA

    Lian-Tao Wang

  8. Department of Physics, Kobe University, Kobe, 657-8501, Japan

    Siyi Zhou

Authors
  1. Haipeng An
    View author publications

    Search author on:PubMed Google Scholar

  2. Kun-Feng Lyu
    View author publications

    Search author on:PubMed Google Scholar

  3. Lian-Tao Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Siyi Zhou
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Kun-Feng Lyu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2201.05171

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Lyu, KF., Wang, LT. et al. Gravitational waves from an inflation triggered first-order phase transition. J. High Energ. Phys. 2022, 50 (2022). https://doi.org/10.1007/JHEP06(2022)050

Download citation

  • Received: 16 February 2022

  • Revised: 08 April 2022

  • Accepted: 07 May 2022

  • Published: 09 June 2022

  • Version of record: 09 June 2022

  • DOI: https://doi.org/10.1007/JHEP06(2022)050

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories BSM
  • Phase Transitions in the Early Universe

Profiles

  1. Haipeng An View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature