Abstract
We study the refined and unrefined crystal/BPS partition functions of D6-D2-D0 brane bound states for all toric Calabi-Yau threefolds without compact 4-cycles and some non-toric examples. They can be written as products of (generalized) MacMahon functions. We check our expressions and use them as vacuum characters to study the gluings. We then consider the wall crossings and discuss possible crystal descriptions for different chambers. We also express the partition functions in terms of plethystic exponentials. For ℂ3 and tripled affine quivers, we find their connections to nilpotent Kac polynomials. Similarly, the partition functions of D4-D2-D0 brane bound states can be obtained by replacing the (generalized) MacMahon functions with the inverse of (generalized) Euler functions.
References
E. B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].
M. K. Prasad and C. M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].
A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals, Prog. Math. 244 (2006) 597 [hep-th/0309208] [INSPIRE].
A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP 04 (2008) 011 [hep-th/0312022] [INSPIRE].
H. Ooguri and M. Yamazaki, Crystal melting and toric Calabi-Yau manifolds, Commun. Math. Phys. 292 (2009) 179 [arXiv:0811.2801] [INSPIRE].
M. Yamazaki, Crystal melting and wall crossing phenomena, Int. J. Mod. Phys. A 26 (2011) 1097 [arXiv:1002.1709] [INSPIRE].
T. D. Dimofte, Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm, Ph.D. thesis, Caltech, Pasadina, CA, U.S.A. (2010) [INSPIRE].
H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994) 365 [INSPIRE].
M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167 [INSPIRE].
M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].
Y.-H. Kiem and J. Li, Categorification of Donaldson-Thomas invariants via perverse sheaves, arXiv:1212.6444.
D. Gaiotto, G. W. Moore and E. Witten, Algebra of the infrared: string field theoretic structures in massive N = (2, 2) field theory in two dimensions, arXiv:1506.04087 [INSPIRE].
D. Gaiotto, G. W. Moore and E. Witten, An introduction to the web-based formalism, arXiv:1506.04086 [INSPIRE].
A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231 [arXiv:1006.2706] [INSPIRE].
W. Li and M. Yamazaki, Quiver Yangian from crystal melting, JHEP 11 (2020) 035 [arXiv:2003.08909] [INSPIRE].
B. Szendroi, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12 (2008) 1171 [arXiv:0705.3419] [INSPIRE].
B. Young and J. Bryan, Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds, Duke Math. J. 152 (2010) 115 [arXiv:0802.3948] [INSPIRE].
M. Cirafici, A. Sinkovics and R. J. Szabo, Instantons, quivers and noncommutative Donaldson-Thomas theory, Nucl. Phys. B 853 (2011) 508 [arXiv:1012.2725] [INSPIRE].
M. Cirafici and R. J. Szabo, Curve counting, instantons and McKay correspondences, J. Geom. Phys. 72 (2013) 54 [arXiv:1209.1486] [INSPIRE].
M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].
A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].
S. Mozgovoy and B. Pioline, Attractor invariants, brane tilings and crystals, arXiv:2012.14358 [INSPIRE].
S. Mozgovoy and M. Reineke, Donaldson-Thomas invariants for 3-Calabi-Yau varieties of dihedral quotient type, arXiv:2104.13251.
P. A. MacMahon, Combinatory analysis, volumes I and II, American Mathematical Society, Providence, RI, U.S.A. (2001).
S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].
B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].
W. Fulton and J. Harris, Representation theory: a first course, Springer, New York, NY, U.S.A. (2004).
C. A. Florentino, Plethystic exponential calculus and characteristic polynomials of permutations, arXiv:2105.13049.
V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980) 57.
S. Franco, A. Hanany, K. D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].
S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].
B. Feng, Y.-H. He, K. D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].
M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].
S. Mozgovoy and M. Reineke, On the noncommutative Donaldson-Thomas invariants arising from brane tilings, Adv. Math. 223 (2010) 1521 [arXiv:0809.0117] [INSPIRE].
H. Ooguri and M. Yamazaki, Emergent Calabi-Yau geometry, Phys. Rev. Lett. 102 (2009) 161601 [arXiv:0902.3996] [INSPIRE].
J. A. Harvey and G. W. Moore, On the algebras of BPS states, Commun. Math. Phys. 197 (1998) 489 [hep-th/9609017] [INSPIRE].
O. Schiffmann and E. Vasserot, Cherednik algebras, w-algebras and the equivariant cohomology of the moduli space of instantons on a 2, Publ. Math. IHÉS 118 (2013) 213 [arXiv:1202.2756].
D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].
A. Tsymbaliuk, The affine Yangian of \( {\mathfrak{gl}}_1 \) revisited, Adv. Math. 304 (2017) 583 [arXiv:1404.5240] [INSPIRE].
T. Procházka, W -symmetry, topological vertex and affine Yangian, JHEP 10 (2016) 077 [arXiv:1512.07178] [INSPIRE].
M. Rapcak, Branes, quivers and BPS algebras, arXiv:2112.13878 [INSPIRE].
D. Galakhov and M. Yamazaki, Quiver Yangian and supersymmetric quantum mechanics, arXiv:2008.07006 [INSPIRE].
M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras, vertex algebras and instantons, Commun. Math. Phys. 376 (2019) 1803 [arXiv:1810.10402] [INSPIRE].
T. Bozec, O. Schiffmann and E. Vasserot, On the number of points of nilpotent quiver varieties over finite fields, arXiv:1701.01797.
O. G. Schiffmann, Kac polynomials and Lie algebras associated to quivers and curves, in Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, World Scientific, Singapore (2018), p. 1393 [arXiv:1802.09760].
O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: yangians, arXiv:1705.07491.
A. Borel and J. C. Moore, Homology theory for locally compact spaces, Michigan Math. J. 7 (1960) 137
B. Davison, The integrality conjecture and the cohomology of preprojective stacks, arXiv:1602.02110.
K. Behrend, J. Bryan and B. Szendroi, Motivic degree zero Donaldson-Thomas invariants, arXiv:0909.5088 [INSPIRE].
B. Davison, The critical CoHA of a quiver with potential, Quart. J. Math. Oxford Ser. 68 (2017) 635 [arXiv:1311.7172] [INSPIRE].
R. Stanley and S. Fomin, Enumerative combinatorics: volume 2, Cambridge University Press, Cambridge, U.K. (1997).
E. M. Wright, Asymptotic partition formulae, Quart. J. Math. os-2 (1931) 177.
V. I. Arnol’d, Critical points of smooth functions and their normal forms, Russ. Math. Surv. 30 (1975) 1.
T. Bridgeland, A. King and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535 [math.AG/9908027].
M. Kobayashi, M. Mase and K. Ueda, A note on exceptional unimodal singularities and k3 surfaces, Int. Math. Res. Not. 2013 (2012) 1665 [arXiv:1107.2169].
Y.-H. He, On fields over fields, arXiv:1003.2986 [INSPIRE].
O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: generators, J. Reine Angewand. Math. 2020 (2018) 59 [arXiv:1705.07488].
B. Young, Computing a pyramid partition generating function with dimer shuffling, J. Combinat. Theor. A 116 (2009) 334 [arXiv:0709.3079].
B. Davison, J. Ongaro and B. Szendroi, Enumerating coloured partitions in 2 and 3 dimensions, Math. Proc. Cambridge Phil. Soc. 169 (2020) 479 [arXiv:1811.12857] [INSPIRE].
M. R. Gaberdiel, W. Li, C. Peng and H. Zhang, The supersymmetric affine Yangian, JHEP 05 (2018) 200 [arXiv:1711.07449] [INSPIRE].
M. R. Gaberdiel, W. Li and C. Peng, Twin-plane-partitions and N = 2 affine Yangian, JHEP 11 (2018) 192 [arXiv:1807.11304] [INSPIRE].
W. Li and P. Longhi, Gluing two affine Yangians of \( {\mathfrak{gl}}_1 \), JHEP 10 (2019) 131 [arXiv:1905.03076] [INSPIRE].
M. R. Gaberdiel and R. Gopakumar, String theory as a higher spin theory, JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].
S. H. Katz, D. R. Morrison and M. R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].
M. Aganagic and K. Schaeffer, Wall crossing, quivers and crystals, JHEP 10 (2012) 153 [arXiv:1006.2113] [INSPIRE].
K. Nagao, Derived categories of small toric Calabi-Yau 3-folds and counting invariants, arXiv:0809.2994.
K. Nagao and M. Yamazaki, The non-commutative topological vertex and wall crossing phenomena, Adv. Theor. Math. Phys. 14 (2010) 1147 [arXiv:0910.5479] [INSPIRE].
F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
B. Acharya, N. Lambert, M. Najjar, E. E. Svanes and J. Tian, Gauging discrete symmetries of TN-theories in five dimensions, JHEP 04 (2022) 114 [arXiv:2110.14441] [INSPIRE].
A. E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].
V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, U.K. (1990).
A. Gholampour and Y. Jiang, Counting invariants for the ADE McKay quivers, arXiv:0910.5551.
S. Mozgovoy, Motivic Donaldson-Thomas invariants and McKay correspondence, arXiv:1107.6044 [INSPIRE].
M. Aganagic, H. Ooguri, C. Vafa and M. Yamazaki, Wall crossing and M-theory, Publ. Res. Inst. Math. Sci. Kyoto 47 (2011) 569 [arXiv:0908.1194] [INSPIRE].
W.-Y. Chuang and D. L. Jafferis, Wall crossing of BPS states on the conifold from Seiberg duality and pyramid partitions, Commun. Math. Phys. 292 (2009) 285 [arXiv:0810.5072] [INSPIRE].
R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, math-ph/0311005 [INSPIRE].
A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].
M. Taki, Refined topological vertex and instanton counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].
T. Nishinaka and S. Yamaguchi, Wall-crossing of D4-D2-D0 and flop of the conifold, JHEP 09 (2010) 026 [arXiv:1007.2731] [INSPIRE].
T. Nishinaka, Multiple D4-D2-D0 on the conifold and wall-crossing with the flop, JHEP 06 (2011) 065 [arXiv:1010.6002] [INSPIRE].
T. Nishinaka and S. Yamaguchi, Statistical model and BPS D4-D2-D0 counting, JHEP 05 (2011) 072 [arXiv:1102.2992] [INSPIRE].
T. Nishinaka and Y. Yoshida, A note on statistical model for BPS D4-D2-D0 states, Phys. Lett. B 711 (2012) 132 [arXiv:1108.4326] [INSPIRE].
T. Nishinaka, S. Yamaguchi and Y. Yoshida, Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities, JHEP 05 (2014) 139 [arXiv:1304.6724] [INSPIRE].
A. Gholampour, A. Sheshmani and R. Thomas, Counting curves on surfaces in Calabi-Yau 3-folds, Math. Ann. 360 (2014) 67 [arXiv:1309.0051] [INSPIRE].
P. Descombes, Cohomological DT invariants from localization, arXiv:2106.02518 [INSPIRE].
D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, arXiv:0810.5645 [INSPIRE].
B. Davison and S. Meinhardt, Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras, arXiv:1601.02479 [INSPIRE].
M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds, arXiv:2007.13365 [INSPIRE].
D. Galakhov, W. Li and M. Yamazaki, Shifted quiver Yangians and representations from BPS crystals, JHEP 08 (2021) 146 [arXiv:2106.01230] [INSPIRE].
D. Galakhov, W. Li and M. Yamazaki, Toroidal and elliptic quiver BPS algebras and beyond, JHEP 02 (2022) 024 [arXiv:2108.10286] [INSPIRE].
G. Noshita and A. Watanabe, Shifted quiver quantum toroidal algebra and subcrystal representations, JHEP 05 (2022) 122 [arXiv:2109.02045] [INSPIRE].
L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].
B. Feigin and S. Gukov, VOA[M4], J. Math. Phys. 61 (2020) 012302 [arXiv:1806.02470] [INSPIRE].
D. Gaiotto and M. Rapčák, Vertex algebras at the corner, JHEP 01 (2019) 160 [arXiv:1703.00982] [INSPIRE].
T. Procházka and M. Rapčák, Webs of W -algebras, JHEP 11 (2018) 109 [arXiv:1711.06888] [INSPIRE].
G. Meinardus, Asymptotische aussagen über Partitionen (in German), Math. Z. 59 (1953) 388.
C. B. Haselgrove and H. N. V. Temperley, Asymptotic formulae in the theory of partitions, Math. Proc. Camb. Phil. Soc. 50 (1954) 225.
L. Richmond, Some general problems on the number of parts in partitions, Acta Arithmetica 66 (1994) 297.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2202.12850
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bao, J., He, YH. & Zahabi, A. Crystal melting, BPS quivers and plethystics. J. High Energ. Phys. 2022, 16 (2022). https://doi.org/10.1007/JHEP06(2022)016
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)016
Keywords
- Brane Dynamics in Gauge Theories
- Differential and Algebraic Geometry
- Gauge Symmetry