Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Crystal melting, BPS quivers and plethystics

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 June 2022
  • volume 2022, Article number: 16 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Crystal melting, BPS quivers and plethystics
Download PDF
  • Jiakang Bao  ORCID: orcid.org/0000-0002-9583-16961,2,
  • Yang-Hui He  ORCID: orcid.org/0000-0002-0787-83802,1,3,4 &
  • Ali Zahabi5,2 
  • 162 Accesses

  • 3 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study the refined and unrefined crystal/BPS partition functions of D6-D2-D0 brane bound states for all toric Calabi-Yau threefolds without compact 4-cycles and some non-toric examples. They can be written as products of (generalized) MacMahon functions. We check our expressions and use them as vacuum characters to study the gluings. We then consider the wall crossings and discuss possible crystal descriptions for different chambers. We also express the partition functions in terms of plethystic exponentials. For ℂ3 and tripled affine quivers, we find their connections to nilpotent Kac polynomials. Similarly, the partition functions of D4-D2-D0 brane bound states can be obtained by replacing the (generalized) MacMahon functions with the inverse of (generalized) Euler functions.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. E. B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].

  2. M. K. Prasad and C. M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

    ADS  Google Scholar 

  3. A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals, Prog. Math. 244 (2006) 597 [hep-th/0309208] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  4. A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP 04 (2008) 011 [hep-th/0312022] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. H. Ooguri and M. Yamazaki, Crystal melting and toric Calabi-Yau manifolds, Commun. Math. Phys. 292 (2009) 179 [arXiv:0811.2801] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. M. Yamazaki, Crystal melting and wall crossing phenomena, Int. J. Mod. Phys. A 26 (2011) 1097 [arXiv:1002.1709] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. T. D. Dimofte, Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm, Ph.D. thesis, Caltech, Pasadina, CA, U.S.A. (2010) [INSPIRE].

  8. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994) 365 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167 [INSPIRE].

  10. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  11. Y.-H. Kiem and J. Li, Categorification of Donaldson-Thomas invariants via perverse sheaves, arXiv:1212.6444.

  12. D. Gaiotto, G. W. Moore and E. Witten, Algebra of the infrared: string field theoretic structures in massive N = (2, 2) field theory in two dimensions, arXiv:1506.04087 [INSPIRE].

  13. D. Gaiotto, G. W. Moore and E. Witten, An introduction to the web-based formalism, arXiv:1506.04086 [INSPIRE].

  14. A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  15. M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5 (2011) 231 [arXiv:1006.2706] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. W. Li and M. Yamazaki, Quiver Yangian from crystal melting, JHEP 11 (2020) 035 [arXiv:2003.08909] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. B. Szendroi, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12 (2008) 1171 [arXiv:0705.3419] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  18. B. Young and J. Bryan, Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds, Duke Math. J. 152 (2010) 115 [arXiv:0802.3948] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. M. Cirafici, A. Sinkovics and R. J. Szabo, Instantons, quivers and noncommutative Donaldson-Thomas theory, Nucl. Phys. B 853 (2011) 508 [arXiv:1012.2725] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. M. Cirafici and R. J. Szabo, Curve counting, instantons and McKay correspondences, J. Geom. Phys. 72 (2013) 54 [arXiv:1209.1486] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. S. Mozgovoy and B. Pioline, Attractor invariants, brane tilings and crystals, arXiv:2012.14358 [INSPIRE].

  24. S. Mozgovoy and M. Reineke, Donaldson-Thomas invariants for 3-Calabi-Yau varieties of dihedral quotient type, arXiv:2104.13251.

  25. P. A. MacMahon, Combinatory analysis, volumes I and II, American Mathematical Society, Providence, RI, U.S.A. (2001).

  26. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. W. Fulton and J. Harris, Representation theory: a first course, Springer, New York, NY, U.S.A. (2004).

  29. C. A. Florentino, Plethystic exponential calculus and characteristic polynomials of permutations, arXiv:2105.13049.

  30. V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980) 57.

  31. S. Franco, A. Hanany, K. D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. B. Feng, Y.-H. He, K. D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  34. M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. S. Mozgovoy and M. Reineke, On the noncommutative Donaldson-Thomas invariants arising from brane tilings, Adv. Math. 223 (2010) 1521 [arXiv:0809.0117] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  36. H. Ooguri and M. Yamazaki, Emergent Calabi-Yau geometry, Phys. Rev. Lett. 102 (2009) 161601 [arXiv:0902.3996] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. J. A. Harvey and G. W. Moore, On the algebras of BPS states, Commun. Math. Phys. 197 (1998) 489 [hep-th/9609017] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. O. Schiffmann and E. Vasserot, Cherednik algebras, w-algebras and the equivariant cohomology of the moduli space of instantons on a 2, Publ. Math. IHÉS 118 (2013) 213 [arXiv:1202.2756].

  39. D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].

  40. A. Tsymbaliuk, The affine Yangian of \( {\mathfrak{gl}}_1 \) revisited, Adv. Math. 304 (2017) 583 [arXiv:1404.5240] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  41. T. Procházka, W -symmetry, topological vertex and affine Yangian, JHEP 10 (2016) 077 [arXiv:1512.07178] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. M. Rapcak, Branes, quivers and BPS algebras, arXiv:2112.13878 [INSPIRE].

  43. D. Galakhov and M. Yamazaki, Quiver Yangian and supersymmetric quantum mechanics, arXiv:2008.07006 [INSPIRE].

  44. M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras, vertex algebras and instantons, Commun. Math. Phys. 376 (2019) 1803 [arXiv:1810.10402] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. T. Bozec, O. Schiffmann and E. Vasserot, On the number of points of nilpotent quiver varieties over finite fields, arXiv:1701.01797.

  46. O. G. Schiffmann, Kac polynomials and Lie algebras associated to quivers and curves, in Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, World Scientific, Singapore (2018), p. 1393 [arXiv:1802.09760].

  47. O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: yangians, arXiv:1705.07491.

  48. A. Borel and J. C. Moore, Homology theory for locally compact spaces, Michigan Math. J. 7 (1960) 137

  49. B. Davison, The integrality conjecture and the cohomology of preprojective stacks, arXiv:1602.02110.

  50. K. Behrend, J. Bryan and B. Szendroi, Motivic degree zero Donaldson-Thomas invariants, arXiv:0909.5088 [INSPIRE].

  51. B. Davison, The critical CoHA of a quiver with potential, Quart. J. Math. Oxford Ser. 68 (2017) 635 [arXiv:1311.7172] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  52. R. Stanley and S. Fomin, Enumerative combinatorics: volume 2, Cambridge University Press, Cambridge, U.K. (1997).

  53. E. M. Wright, Asymptotic partition formulae, Quart. J. Math. os-2 (1931) 177.

  54. V. I. Arnol’d, Critical points of smooth functions and their normal forms, Russ. Math. Surv. 30 (1975) 1.

  55. T. Bridgeland, A. King and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535 [math.AG/9908027].

  56. M. Kobayashi, M. Mase and K. Ueda, A note on exceptional unimodal singularities and k3 surfaces, Int. Math. Res. Not. 2013 (2012) 1665 [arXiv:1107.2169].

  57. Y.-H. He, On fields over fields, arXiv:1003.2986 [INSPIRE].

  58. O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: generators, J. Reine Angewand. Math. 2020 (2018) 59 [arXiv:1705.07488].

  59. B. Young, Computing a pyramid partition generating function with dimer shuffling, J. Combinat. Theor. A 116 (2009) 334 [arXiv:0709.3079].

  60. B. Davison, J. Ongaro and B. Szendroi, Enumerating coloured partitions in 2 and 3 dimensions, Math. Proc. Cambridge Phil. Soc. 169 (2020) 479 [arXiv:1811.12857] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. M. R. Gaberdiel, W. Li, C. Peng and H. Zhang, The supersymmetric affine Yangian, JHEP 05 (2018) 200 [arXiv:1711.07449] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. M. R. Gaberdiel, W. Li and C. Peng, Twin-plane-partitions and N = 2 affine Yangian, JHEP 11 (2018) 192 [arXiv:1807.11304] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. W. Li and P. Longhi, Gluing two affine Yangians of \( {\mathfrak{gl}}_1 \), JHEP 10 (2019) 131 [arXiv:1905.03076] [INSPIRE].

    ADS  MATH  Google Scholar 

  64. M. R. Gaberdiel and R. Gopakumar, String theory as a higher spin theory, JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. S. H. Katz, D. R. Morrison and M. R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. M. Aganagic and K. Schaeffer, Wall crossing, quivers and crystals, JHEP 10 (2012) 153 [arXiv:1006.2113] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. K. Nagao, Derived categories of small toric Calabi-Yau 3-folds and counting invariants, arXiv:0809.2994.

  68. K. Nagao and M. Yamazaki, The non-commutative topological vertex and wall crossing phenomena, Adv. Theor. Math. Phys. 14 (2010) 1147 [arXiv:0910.5479] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  69. F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    ADS  Google Scholar 

  71. B. Acharya, N. Lambert, M. Najjar, E. E. Svanes and J. Tian, Gauging discrete symmetries of TN-theories in five dimensions, JHEP 04 (2022) 114 [arXiv:2110.14441] [INSPIRE].

    ADS  MATH  Google Scholar 

  72. A. E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, U.K. (1990).

  74. A. Gholampour and Y. Jiang, Counting invariants for the ADE McKay quivers, arXiv:0910.5551.

  75. S. Mozgovoy, Motivic Donaldson-Thomas invariants and McKay correspondence, arXiv:1107.6044 [INSPIRE].

  76. M. Aganagic, H. Ooguri, C. Vafa and M. Yamazaki, Wall crossing and M-theory, Publ. Res. Inst. Math. Sci. Kyoto 47 (2011) 569 [arXiv:0908.1194] [INSPIRE].

  77. W.-Y. Chuang and D. L. Jafferis, Wall crossing of BPS states on the conifold from Seiberg duality and pyramid partitions, Commun. Math. Phys. 292 (2009) 285 [arXiv:0810.5072] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, math-ph/0311005 [INSPIRE].

  79. A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  80. M. Taki, Refined topological vertex and instanton counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  81. T. Nishinaka and S. Yamaguchi, Wall-crossing of D4-D2-D0 and flop of the conifold, JHEP 09 (2010) 026 [arXiv:1007.2731] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  82. T. Nishinaka, Multiple D4-D2-D0 on the conifold and wall-crossing with the flop, JHEP 06 (2011) 065 [arXiv:1010.6002] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  83. T. Nishinaka and S. Yamaguchi, Statistical model and BPS D4-D2-D0 counting, JHEP 05 (2011) 072 [arXiv:1102.2992] [INSPIRE].

    ADS  MATH  Google Scholar 

  84. T. Nishinaka and Y. Yoshida, A note on statistical model for BPS D4-D2-D0 states, Phys. Lett. B 711 (2012) 132 [arXiv:1108.4326] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  85. T. Nishinaka, S. Yamaguchi and Y. Yoshida, Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities, JHEP 05 (2014) 139 [arXiv:1304.6724] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  86. A. Gholampour, A. Sheshmani and R. Thomas, Counting curves on surfaces in Calabi-Yau 3-folds, Math. Ann. 360 (2014) 67 [arXiv:1309.0051] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  87. P. Descombes, Cohomological DT invariants from localization, arXiv:2106.02518 [INSPIRE].

  88. D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, arXiv:0810.5645 [INSPIRE].

  89. B. Davison and S. Meinhardt, Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras, arXiv:1601.02479 [INSPIRE].

  90. M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds, arXiv:2007.13365 [INSPIRE].

  91. D. Galakhov, W. Li and M. Yamazaki, Shifted quiver Yangians and representations from BPS crystals, JHEP 08 (2021) 146 [arXiv:2106.01230] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  92. D. Galakhov, W. Li and M. Yamazaki, Toroidal and elliptic quiver BPS algebras and beyond, JHEP 02 (2022) 024 [arXiv:2108.10286] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  93. G. Noshita and A. Watanabe, Shifted quiver quantum toroidal algebra and subcrystal representations, JHEP 05 (2022) 122 [arXiv:2109.02045] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  94. L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  95. N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].

    ADS  MATH  Google Scholar 

  96. B. Feigin and S. Gukov, VOA[M4], J. Math. Phys. 61 (2020) 012302 [arXiv:1806.02470] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  97. D. Gaiotto and M. Rapčák, Vertex algebras at the corner, JHEP 01 (2019) 160 [arXiv:1703.00982] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  98. T. Procházka and M. Rapčák, Webs of W -algebras, JHEP 11 (2018) 109 [arXiv:1711.06888] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  99. G. Meinardus, Asymptotische aussagen über Partitionen (in German), Math. Z. 59 (1953) 388.

  100. C. B. Haselgrove and H. N. V. Temperley, Asymptotic formulae in the theory of partitions, Math. Proc. Camb. Phil. Soc. 50 (1954) 225.

  101. L. Richmond, Some general problems on the number of parts in partitions, Acta Arithmetica 66 (1994) 297.

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, City, University of London, London, EC1V 0HB, U.K.

    Jiakang Bao & Yang-Hui He

  2. London Institute for Mathematical Sciences, Royal Institution, London, W1S 4BS, U.K.

    Jiakang Bao, Yang-Hui He & Ali Zahabi

  3. Merton College, University of Oxford, Oxford, OX1 4JD, U.K.

    Yang-Hui He

  4. School of Physics, NanKai University, Tianjin, 300071, P.R. China

    Yang-Hui He

  5. Institut de Mathématiques de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France

    Ali Zahabi

Authors
  1. Jiakang Bao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yang-Hui He
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ali Zahabi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jiakang Bao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.12850

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., He, YH. & Zahabi, A. Crystal melting, BPS quivers and plethystics. J. High Energ. Phys. 2022, 16 (2022). https://doi.org/10.1007/JHEP06(2022)016

Download citation

  • Received: 16 March 2022

  • Accepted: 09 May 2022

  • Published: 06 June 2022

  • DOI: https://doi.org/10.1007/JHEP06(2022)016

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Brane Dynamics in Gauge Theories
  • Differential and Algebraic Geometry
  • Gauge Symmetry

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature