Abstract
The first measurements of energy spectra and substructure of anti-kT jets in hadronic Z0 decays in e+e− collisions are presented. The archived e+e− annihilation data at a center-of-mass energy of 91.2 GeV were collected with the ALEPH detector at LEP in 1994. In addition to inclusive jet and leading dijet energy spectra, various jet substructure observables are analyzed as a function of jet energy which includes groomed and ungroomed jet mass to jet energy ratios, groomed momentum sharing, and groomed jet radius. The results are compared with perturbative QCD calculations and predictions from the Sherpa, Herwig v7.1.5, Pythia6, Pythia8 and Pyquen event generators. The jet energy spectra agree with perturbative QCD calculations which include the treatment of logarithms of the jet radius and threshold logarithms. None of the event generators give a fully satisfactory description of the data.
References
A. Abdesselam et al., Boosted Objects: A Probe of Beyond the Standard Model Physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].
A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].
A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].
M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
S. Cao and X.-N. Wang, Jet quenching and medium response in high-energy heavy-ion collisions: a review, Rept. Prog. Phys. 84 (2021) 024301 [arXiv:2002.04028] [INSPIRE].
L. Cunqueiro and A.M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124 (2022) 103940 [arXiv:2110.14490] [INSPIRE].
T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
D. Reichelt, P. Richardson and A. Siodmok, Improving the Simulation of Quark and Gluon Jets with HERWIG 7, Eur. Phys. J. C 77 (2017) 876 [arXiv:1708.01491] [INSPIRE].
D. Neill, F. Ringer and N. Sato, Leading jets and energy loss, JHEP 07 (2021) 041 [arXiv:2103.16573] [INSPIRE].
H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, J. Phys. G 47 (2020) 065102 [arXiv:1808.03689] [INSPIRE].
R. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report, arXiv:2103.05419 [INSPIRE].
ALEPH collaboration, ALEPH: A detector for electron-positron annnihilations at LEP, Nucl. Instrum. Meth. A 294 (1990) 121 [Erratum ibid. 303 (1991) 393] [INSPIRE].
ALEPH collaboration, Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].
A. Tripathee, W. Xue, A. Larkoski, S. Marzani and J. Thaler, Jet Substructure Studies with CMS Open Data, Phys. Rev. D 96 (2017) 074003 [arXiv:1704.05842] [INSPIRE].
A. Badea et al., Measurements of two-particle correlations in e+ e− collisions at 91 GeV with ALEPH archived data, Phys. Rev. Lett. 123 (2019) 212002 [arXiv:1906.00489] [INSPIRE].
ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91-GeV and 209-GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].
ALEPH collaboration, Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1 [INSPIRE].
E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
J.D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p(t) Jets in Hadron-Hadron Collisions, FERMILAB-PUB-82-059-THY.
ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{s_{NN}} \) = 2.77 TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
I.P. Lokhtin and A.M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J. C 45 (2006) 211 [hep-ph/0506189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ATLAS collaboration, Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220 [arXiv:1208.1967] [INSPIRE].
ATLAS collaboration, Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at \( \sqrt{s_NN} \) = 5.02 TeV with the ATLAS detector, Phys. Lett. B 790 (2019) 108 [arXiv:1805.05635] [INSPIRE].
CMS collaboration, First measurement of large area jet transverse momentum spectra in heavy-ion collisions, JHEP 05 (2021) 284 [arXiv:2102.13080] [INSPIRE].
CMS collaboration, Measurement of inclusive jet cross sections in pp and PbPb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 96 (2017) 015202 [arXiv:1609.05383] [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
Y. Chen et al., Analysis note: jet reconstruction, energy spectra, and substructure analyses with archived ALEPH data, arXiv:2108.04877 [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512] [INSPIRE].
STAR collaboration, Measurement of groomed jet substructure observables in p+p collisions at \( \sqrt{s} \) = 200 GeV with STAR, Phys. Lett. B 811 (2020) 135846 [arXiv:2003.02114] [INSPIRE].
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
CMS collaboration, Measurement of jet substructure observables in \( t\overline{t} \) events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 092014 [arXiv:1808.07340] [INSPIRE].
CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, JHEP 10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), (1998), pp. 270–279 [hep-ph/9907280] [INSPIRE].
A. Larkoski, S. Marzani, J. Thaler, A. Tripathee and W. Xue, Exposing the QCD Splitting Function with CMS Open Data, Phys. Rev. Lett. 119 (2017) 132003 [arXiv:1704.05066] [INSPIRE].
G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].
A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A 372 (1996) 469 [hep-ph/9509307] [INSPIRE].
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2111.09914
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chen, Y., Badea, A., Baty, A. et al. Jet energy spectrum and substructure in e+e− collisions at 91.2 GeV with ALEPH Archived Data. J. High Energ. Phys. 2022, 8 (2022). https://doi.org/10.1007/JHEP06(2022)008
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)008
Keywords
- Jet substructure
- e +-e − Experiments
- Jet Physics
- Jets
- QCD