Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Global properties of the conformal manifold for S-fold backgrounds

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 June 2021
  • volume 2021, Article number: 111 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Global properties of the conformal manifold for S-fold backgrounds
Download PDF
  • Alfredo Giambrone1,2,
  • Emanuel Malek3,
  • Henning Samtleben4 &
  • …
  • Mario Trigiante1,2 
  • 178 Accesses

  • 12 Citations

  • 2 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study a one-parameter family of \( \mathcal{N} \) = 2 anti-de Sitter vacua with U(1)2 symmetry of gauged four-dimensional maximal supergravity, with dyonic gauge group [SO(6) × SO(1, 1)] ⋉ ℝ12. These backgrounds are known to correspond to Type IIB S-fold solutions with internal manifold of topology S1 × S5. The family of AdS4 vacua is parametrized by a modulus χ. Although χ appears non-compact in the four-dimensional supergravity, we show that this is just an artefact of the four-dimensional description. We give the 10-dimensional geometric interpretation of the modulus and show that it actually has periodicity of \( \frac{2\pi }{T} \), which is the inverse radius of S1. We deduce this by providing the explicit D = 10 uplift of the family of vacua as well as computing the entire modulus-dependent Kaluza-Klein spectrum as a function of χ. At the special values χ = 0 and χ = \( \frac{\pi }{T} \), the symmetry enhances according to U(1)2 → U(2), giving rise however to inequivalent Kaluza-Klein spectra. At χ = \( \frac{\pi }{T} \), this realizes a bosonic version of the “space invaders” scenario with additional massless vector fields arising from formerly massive fields at higher Kaluza-Klein levels.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  3. B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies, and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  5. H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An Exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  12. O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  13. A. Baguet, O. Hohm and H. Samtleben, E6(6) Exceptional Field Theory: Review and Embedding of Type IIB, PoS(CORFU2014)133 (2015) [arXiv:1506.01065] [INSPIRE].

  14. O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. E. Malek and H. Samtleben, Kaluza-Klein Spectrometry for Supergravity, Phys. Rev. Lett. 124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Malek and H. Samtleben, Kaluza-Klein Spectrometry from Exceptional Field Theory, Phys. Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  21. C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav. 5 (1988) 1517 [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].

    MATH  ADS  Google Scholar 

  25. A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. A. Guarino, J. Tarrio and O. Varela, Flowing to \( \mathcal{N} \) = 3 Chern-Simons-matter theory, JHEP 03 (2020) 100 [arXiv:1910.06866] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. A. Guarino, J. Tarrio and O. Varela, Brane-jet stability of non-supersymmetric AdS vacua, JHEP 09 (2020) 110 [arXiv:2005.07072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Guarino, E. Malek and H. Samtleben, Stable Nonsupersymmetric Anti–de Sitter Vacua of Massive IIA Supergravity, Phys. Rev. Lett. 126 (2021) 061601 [arXiv:2011.06600] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \) > 2 supersymmetric AdS vacua in maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].

  33. D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Marginal deformations and RG flows for type IIB S-folds, arXiv:2103.15201 [INSPIRE].

  36. N. Bobev, F.F. Gautason and J. van Muiden, The Holographic Conformal Manifold of 3d \( \mathcal{N} \) = 2 S-fold SCFTs, arXiv:2104.00977 [INSPIRE].

  37. B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  39. D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  40. M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Cesaro, G. Larios and O. Varela, A Cubic Deformation of ABJM: The Squashed, Stretched, Warped, and Perturbed Gets Invaded, JHEP 10 (2020) 041 [arXiv:2007.05172] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Bobev, F.F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. G. Aldazabal, P.G. Cámara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré, R. Minasian and M. Trigiante, Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249 [hep-th/9612202] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].

  49. M. Cesàro and O. Varela, Kaluza-Klein fermion mass matrices from exceptional field theory and \( \mathcal{N} \) = 1 spectra, JHEP 03 (2021) 138 [arXiv:2012.05249] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys. 65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. K. Dimmitt, G. Larios, P. Ntokos and O. Varela, Universal properties of Kaluza-Klein gravitons, JHEP 03 (2020) 039 [arXiv:1911.12202] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 – D N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3 × S3 × S3 × S1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  54. M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS3/CFT2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. C. Eloy, Kaluza-Klein spectrometry for AdS3 vacua, arXiv:2011.11658 [INSPIRE].

  56. A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS4 backgrounds in generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

    Alfredo Giambrone & Mario Trigiante

  2. INFN — Sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy

    Alfredo Giambrone & Mario Trigiante

  3. Institut für Physik, Humboldt-Universität zu Berlin, IRIS Gebäude, Zum Großen Windkanal 2, 12489, Berlin, Germany

    Emanuel Malek

  4. Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342, Lyon, France

    Henning Samtleben

Authors
  1. Alfredo Giambrone
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Emanuel Malek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Henning Samtleben
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Mario Trigiante
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mario Trigiante.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.10797

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giambrone, A., Malek, E., Samtleben, H. et al. Global properties of the conformal manifold for S-fold backgrounds. J. High Energ. Phys. 2021, 111 (2021). https://doi.org/10.1007/JHEP06(2021)111

Download citation

  • Received: 31 March 2021

  • Accepted: 26 May 2021

  • Published: 17 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)111

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supergravity Models
  • Flux compactifications
  • AdS-CFT Correspondence
  • String Duality
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature