Abstract
We study a one-parameter family of \( \mathcal{N} \) = 2 anti-de Sitter vacua with U(1)2 symmetry of gauged four-dimensional maximal supergravity, with dyonic gauge group [SO(6) × SO(1, 1)] ⋉ ℝ12. These backgrounds are known to correspond to Type IIB S-fold solutions with internal manifold of topology S1 × S5. The family of AdS4 vacua is parametrized by a modulus χ. Although χ appears non-compact in the four-dimensional supergravity, we show that this is just an artefact of the four-dimensional description. We give the 10-dimensional geometric interpretation of the modulus and show that it actually has periodicity of \( \frac{2\pi }{T} \), which is the inverse radius of S1. We deduce this by providing the explicit D = 10 uplift of the family of vacua as well as computing the entire modulus-dependent Kaluza-Klein spectrum as a function of χ. At the special values χ = 0 and χ = \( \frac{\pi }{T} \), the symmetry enhances according to U(1)2 → U(2), giving rise however to inequivalent Kaluza-Klein spectra. At χ = \( \frac{\pi }{T} \), this realizes a bosonic version of the “space invaders” scenario with additional massless vector fields arising from formerly massive fields at higher Kaluza-Klein levels.
Article PDF
References
B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].
B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].
B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies, and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].
H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].
M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].
F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An Exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].
H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].
B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
A. Baguet, O. Hohm and H. Samtleben, E6(6) Exceptional Field Theory: Review and Embedding of Type IIB, PoS(CORFU2014)133 (2015) [arXiv:1506.01065] [INSPIRE].
O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].
E. Malek and H. Samtleben, Kaluza-Klein Spectrometry for Supergravity, Phys. Rev. Lett. 124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].
E. Malek and H. Samtleben, Kaluza-Klein Spectrometry from Exceptional Field Theory, Phys. Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].
G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].
B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].
C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav. 5 (1988) 1517 [INSPIRE].
L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].
A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].
A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].
A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].
A. Guarino, J. Tarrio and O. Varela, Flowing to \( \mathcal{N} \) = 3 Chern-Simons-matter theory, JHEP 03 (2020) 100 [arXiv:1910.06866] [INSPIRE].
A. Guarino, J. Tarrio and O. Varela, Brane-jet stability of non-supersymmetric AdS vacua, JHEP 09 (2020) 110 [arXiv:2005.07072] [INSPIRE].
A. Guarino, E. Malek and H. Samtleben, Stable Nonsupersymmetric Anti–de Sitter Vacua of Massive IIA Supergravity, Phys. Rev. Lett. 126 (2021) 061601 [arXiv:2011.06600] [INSPIRE].
G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \) > 2 supersymmetric AdS vacua in maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].
A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].
A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].
D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].
I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Marginal deformations and RG flows for type IIB S-folds, arXiv:2103.15201 [INSPIRE].
N. Bobev, F.F. Gautason and J. van Muiden, The Holographic Conformal Manifold of 3d \( \mathcal{N} \) = 2 S-fold SCFTs, arXiv:2104.00977 [INSPIRE].
B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].
D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].
M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].
M. Cesaro, G. Larios and O. Varela, A Cubic Deformation of ABJM: The Squashed, Stretched, Warped, and Perturbed Gets Invaded, JHEP 10 (2020) 041 [arXiv:2007.05172] [INSPIRE].
A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].
N. Bobev, F.F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].
D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
G. Aldazabal, P.G. Cámara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].
K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].
L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré, R. Minasian and M. Trigiante, Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249 [hep-th/9612202] [INSPIRE].
E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].
M. Cesàro and O. Varela, Kaluza-Klein fermion mass matrices from exceptional field theory and \( \mathcal{N} \) = 1 spectra, JHEP 03 (2021) 138 [arXiv:2012.05249] [INSPIRE].
E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys. 65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].
K. Dimmitt, G. Larios, P. Ntokos and O. Varela, Universal properties of Kaluza-Klein gravitons, JHEP 03 (2020) 039 [arXiv:1911.12202] [INSPIRE].
J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 – D N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3 × S3 × S3 × S1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].
M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS3/CFT2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].
C. Eloy, Kaluza-Klein spectrometry for AdS3 vacua, arXiv:2011.11658 [INSPIRE].
A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].
A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS4 backgrounds in generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].
S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].
J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].
C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2103.10797
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Giambrone, A., Malek, E., Samtleben, H. et al. Global properties of the conformal manifold for S-fold backgrounds. J. High Energ. Phys. 2021, 111 (2021). https://doi.org/10.1007/JHEP06(2021)111
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2021)111