Skip to main content

Global properties of the conformal manifold for S-fold backgrounds

A preprint version of the article is available at arXiv.

Abstract

We study a one-parameter family of \( \mathcal{N} \) = 2 anti-de Sitter vacua with U(1)2 symmetry of gauged four-dimensional maximal supergravity, with dyonic gauge group [SO(6) × SO(1, 1)] ⋉ ℝ12. These backgrounds are known to correspond to Type IIB S-fold solutions with internal manifold of topology S1 × S5. The family of AdS4 vacua is parametrized by a modulus χ. Although χ appears non-compact in the four-dimensional supergravity, we show that this is just an artefact of the four-dimensional description. We give the 10-dimensional geometric interpretation of the modulus and show that it actually has periodicity of \( \frac{2\pi }{T} \), which is the inverse radius of S1. We deduce this by providing the explicit D = 10 uplift of the family of vacua as well as computing the entire modulus-dependent Kaluza-Klein spectrum as a function of χ. At the special values χ = 0 and χ = \( \frac{\pi }{T} \), the symmetry enhances according to U(1)2 → U(2), giving rise however to inequivalent Kaluza-Klein spectra. At χ = \( \frac{\pi }{T} \), this realizes a bosonic version of the “space invaders” scenario with additional massless vector fields arising from formerly massive fields at higher Kaluza-Klein levels.

References

  1. B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  2. B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  3. B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  4. B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies, and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  5. H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  6. M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  7. F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An Exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  8. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  10. O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  12. O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  13. A. Baguet, O. Hohm and H. Samtleben, E6(6) Exceptional Field Theory: Review and Embedding of Type IIB, PoS(CORFU2014)133 (2015) [arXiv:1506.01065] [INSPIRE].

  14. O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  15. E. Malek and H. Samtleben, Kaluza-Klein Spectrometry for Supergravity, Phys. Rev. Lett. 124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  16. E. Malek and H. Samtleben, Kaluza-Klein Spectrometry from Exceptional Field Theory, Phys. Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  17. G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  18. G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  20. B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  21. C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant. Grav. 5 (1988) 1517 [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  22. L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  23. A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].

    MATH  ADS  Google Scholar 

  25. A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  26. A. Guarino, J. Tarrio and O. Varela, Flowing to \( \mathcal{N} \) = 3 Chern-Simons-matter theory, JHEP 03 (2020) 100 [arXiv:1910.06866] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  27. A. Guarino, J. Tarrio and O. Varela, Brane-jet stability of non-supersymmetric AdS vacua, JHEP 09 (2020) 110 [arXiv:2005.07072] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  28. A. Guarino, E. Malek and H. Samtleben, Stable Nonsupersymmetric Anti–de Sitter Vacua of Massive IIA Supergravity, Phys. Rev. Lett. 126 (2021) 061601 [arXiv:2011.06600] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  29. G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  30. A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \) > 2 supersymmetric AdS vacua in maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  32. A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].

  33. D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  34. E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  35. I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Marginal deformations and RG flows for type IIB S-folds, arXiv:2103.15201 [INSPIRE].

  36. N. Bobev, F.F. Gautason and J. van Muiden, The Holographic Conformal Manifold of 3d \( \mathcal{N} \) = 2 S-fold SCFTs, arXiv:2104.00977 [INSPIRE].

  37. B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  38. E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  39. D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  40. M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  41. M. Cesaro, G. Larios and O. Varela, A Cubic Deformation of ABJM: The Squashed, Stretched, Warped, and Perturbed Gets Invaded, JHEP 10 (2020) 041 [arXiv:2007.05172] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  42. A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  43. N. Bobev, F.F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  44. D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  45. G. Aldazabal, P.G. Cámara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  46. K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  47. L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré, R. Minasian and M. Trigiante, Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249 [hep-th/9612202] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  48. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].

  49. M. Cesàro and O. Varela, Kaluza-Klein fermion mass matrices from exceptional field theory and \( \mathcal{N} \) = 1 spectra, JHEP 03 (2021) 138 [arXiv:2012.05249] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  50. E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys. 65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  51. K. Dimmitt, G. Larios, P. Ntokos and O. Varela, Universal properties of Kaluza-Klein gravitons, JHEP 03 (2020) 039 [arXiv:1911.12202] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  52. J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 – D N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  53. L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3 × S3 × S3 × S1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  54. M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS3/CFT2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  55. C. Eloy, Kaluza-Klein spectrometry for AdS3 vacua, arXiv:2011.11658 [INSPIRE].

  56. A. Ashmore, M. Gabella, M. Graña, M. Petrini and D. Waldram, Exactly marginal deformations from exceptional generalised geometry, JHEP 01 (2017) 124 [arXiv:1605.05730] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  57. A. Ashmore, Marginal deformations of 3d \( \mathcal{N} \) = 2 CFTs from AdS4 backgrounds in generalised geometry, JHEP 12 (2018) 060 [arXiv:1809.03503] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  58. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  59. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  60. C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Trigiante.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.10797

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giambrone, A., Malek, E., Samtleben, H. et al. Global properties of the conformal manifold for S-fold backgrounds. J. High Energ. Phys. 2021, 111 (2021). https://doi.org/10.1007/JHEP06(2021)111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2021)111

Keywords

  • Supergravity Models
  • Flux compactifications
  • AdS-CFT Correspondence
  • String Duality