Abstract
Heisenberg time evolution under a chaotic many-body Hamiltonian H transforms an initially simple operator into an increasingly complex one, as it spreads over Hilbert space. Krylov complexity, or ‘K-complexity’, quantifies this growth with respect to a special basis, generated by H by successive nested commutators with the operator. In this work we study the evolution of K-complexity in finite-entropy systems for time scales greater than the scrambling time ts > log(S). We prove rigorous bounds on K-complexity as well as the associated Lanczos sequence and, using refined parallelized algorithms, we undertake a detailed numerical study of these quantities in the SYK4 model, which is maximally chaotic, and compare the results with the SYK2 model, which is integrable. While the former saturates the bound, the latter stays exponentially below it. We discuss to what extent this is a generic feature distinguishing between chaotic vs. integrable systems.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].
J. L. F. Barbón and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [INSPIRE].
L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].
L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
J. L. F. Barbón and E. Rabinovici, Geometry And Quantum Noise, Fortsch. Phys. 62 (2014) 626 [arXiv:1404.7085] [INSPIRE].
J. S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
A. R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, Phys. Rev. X 9 (2019) 041017 [arXiv:1812.08657] [INSPIRE].
J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, On The Evolution Of Operator Complexity Beyond Scrambling, JHEP 10 (2019) 264 [arXiv:1907.05393] [INSPIRE].
L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner and E. Solano, Digital Quantum Simulation of Minimal AdS/CFT, Phys. Rev. Lett. 119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].
R. Babbush, D. W. Berry and H. Neven, Quantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric Qubitization, Phys. Rev. A 99 (2019) 040301 [arXiv:1806.02793] [INSPIRE].
A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv. 52 (1997) 1191.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press (2010) [DOI].
C. M. Dawson and M. A. Nielsen, The solovay-kitaev algorithm, quant-ph/0505030.
D. A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018) 122 [arXiv:1802.02633] [INSPIRE].
A. Altland and J. Sonner, Late time physics of holographic quantum chaos, arXiv:2008.02271 [INSPIRE].
V. Viswanath and G. Müller, The Recursion Method, Springer-Verlag Berlin Heidelberg (1994) [DOI].
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. B 45 (1950) 255 [INSPIRE].
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015 [http://online.kitp.ucsb.edu/online/entangled15/kitaev/].
A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015 [http://online.kitp.ucsb.edu/online/entangled15/kitaev2/].
S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
A. M. García-García and J. J. M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
A. M. García-García, B. Loureiro, A. Romero-Bermúdez and M. Tezuka, Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 120 (2018) 241603 [arXiv:1707.02197] [INSPIRE].
A. M. García-García, Y. Jia, D. Rosa and J. J. M. Verbaarschot, Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals, Phys. Rev. D 103 (2021) 106002 [arXiv:2007.13837] [INSPIRE].
M. Haque and P. McClarty, Eigenstate thermalization scaling in Majorana clusters: From chaotic to integrable Sachdev-Ye-Kitaev models, Phys. Rev. B 100 (2019) 115122 [arXiv:1711.02360] [INSPIRE].
A. Krylov, De la résolution numérique de l’équation servant à déterminer dans des questions de mécanique appliquée les fréquences de petites oscillations des systèmes matériels, Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles 4 (1931) 491.
A. Peres, Ergodicity and mixing in quantum theory. I, Phys. Rev. A 30 (1984) 504 [INSPIRE].
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.
M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A 32 (1999) 1163.
L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].
M. Carrega, J. Kim and D. Rosa, Unveiling operator growth in SYK quench dynamics, arXiv:2007.03551 [INSPIRE].
H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comput. 42 (1984) 115.
B. N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics (1998) [DOI].
J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP 11 (2017) 149 [arXiv:1707.08013] [INSPIRE].
P. Saad, S. H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
S.-K. Jian, B. Swingle and Z.-Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, JHEP 03 (2021) 014 [arXiv:2008.12274] [INSPIRE].
B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization, Math. Comput. 33 (1979) 217.
D. J. Yates, A. G. Abanov and A. Mitra, Dynamics of almost strong edge modes in spin chains away from integrability, Phys. Rev. B 102 (2020) 195419 [arXiv:2009.00057] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2009.01862
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Rabinovici, E., Sánchez-Garrido, A., Shir, R. et al. Operator complexity: a journey to the edge of Krylov space. J. High Energ. Phys. 2021, 62 (2021). https://doi.org/10.1007/JHEP06(2021)062
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2021)062