Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Universal statistics of vortices in a newborn holographic superconductor: beyond the Kibble-Zurek mechanism
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Formation and critical dynamics of topological defects in Lifshitz holography

22 April 2020

Zhi-Hong Li, Chuan-Yin Xia, … Hai-Qing Zhang

The holographic vortex lattice using the circular cell method

10 January 2020

Gianni Tallarita & Roberto Auzzi

Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field

29 October 2020

Leonardo Rodrigues Cadorim, Alexssandre de Oliveira Junior & Edson Sardella

Holographic topological defects and local gauge symmetry: clusters of strongly coupled equal-sign vortices

15 October 2021

Zhi-Hong Li, Chuan-Yin Xia, … Hai-Qing Zhang

Collective dynamics and the Anderson-Higgs mechanism in a bona fide holographic superconductor

27 March 2023

Hyun-Sik Jeong, Matteo Baggioli, … Ya-Wen Sun

The Abrikosov Vortex Lattice: Its Discovery and Impact

17 November 2018

R. P. Huebener

Vortex phases and glassy dynamics in the highly anisotropic superconductor HgBa2CuO4+δ

24 June 2020

Serena Eley, Roland Willa, … Leonardo Civale

Vortical patterns in bulk superconducting systems with mixed pairing orders

06 May 2021

Rui-Feng Chai & Guo-Qiao Zha

On the First Critical Field in the Three Dimensional Ginzburg–Landau Model of Superconductivity

30 January 2019

Carlos Román

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 09 June 2021

Universal statistics of vortices in a newborn holographic superconductor: beyond the Kibble-Zurek mechanism

  • Adolfo del Campo1,2,3,4,
  • Fernando Javier Gómez-Ruiz  ORCID: orcid.org/0000-0002-1855-06712,5,
  • Zhi-Hong Li6,
  • Chuan-Yin Xia7,
  • Hua-Bi Zeng8 &
  • …
  • Hai-Qing Zhang6 

Journal of High Energy Physics volume 2021, Article number: 61 (2021) Cite this article

  • 297 Accesses

  • 11 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Traversing a continuous phase transition at a finite rate leads to the breakdown of adiabatic dynamics and the formation of topological defects, as predicted by the celebrated Kibble-Zurek mechanism (KZM). We investigate universal signatures beyond the KZM, by characterizing the distribution of vortices generated in a thermal quench leading to the formation of a holographic superconductor. The full counting statistics of vortices is described by a binomial distribution, in which the mean value is dictated by the KZM and higher-order cumulants share the universal power-law scaling with the quench time. Extreme events associated with large fluctuations no longer exhibit a power-law behavior with the quench time and are characterized by a universal form of the Weibull distribution for different quench rates.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    Article  ADS  Google Scholar 

  2. W.H. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  3. T.W.B. Kibble, Some implications of a cosmological phase transition, Phys. Rept. 67 (1980) 183 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. W.H. Zurek, Cosmological experiments in condensed matter systems, Phys. Rept. 276 (1996) 177 [cond-mat/9607135] [INSPIRE].

  5. V.M.H. Ruutu et al., Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation, Nature 382 (1996) 334 [cond-mat/9512117] [INSPIRE].

  6. C. Baeuerle, Y.M. Bunkov, S.N. Fisher, H. Godfrin and G.R. Pickett, Laboratory simulation of cosmic string formation in the early universe using superfluid 3He, Nature 382 (1996) 332 [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. del Campo and W.H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A 29 (2014) 1430018 [arXiv:1310.1600] [INSPIRE].

    Article  Google Scholar 

  8. S. Deutschländer, P. Dillmann, G. Maret and P. Keim, Kibble-Zurek mechanism in colloidal monolayers, Proc. Nat. Acad. Sci. 112 (2015) 6925 [arXiv:1503.08698] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Keesling et al., Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator, Nature 568 (2019) 207 [arXiv:1809.05540] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Y. Bando et al., Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond, Phys. Rev. Res. 2 (2020) 033369 [arXiv:2001.11637].

    Article  Google Scholar 

  11. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, MIT Press, Cambridge (2018).

    MATH  Google Scholar 

  12. H. Liu and J. Sonner, Holographic systems far from equilibrium: a review, arXiv:1810.02367 [INSPIRE].

  13. J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium dynamics of a holographic superconductor, Nature Commun. 6 (2015) 7406 [arXiv:1406.2329] [INSPIRE].

    Article  ADS  Google Scholar 

  14. H.-B. Zeng, C.-Y. Xia and H.-Q. Zhang, Topological defects as relics of spontaneous symmetry breaking in a holographic superconductor, JHEP 03 (2021) 136 [arXiv:1912.08332] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.-Y. Xia and H.-B. Zeng, Winding up a finite size holographic superconducting ring beyond Kibble-Zurek mechanism, Phys. Rev. D 102 (2020) 126005 [arXiv:2009.00435] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Das, J. Sabbatini and W.H. Zurek, Winding up superfluid in a torus via Bose Einstein condensation, Sci. Rep. 2 (2011) 352 [arXiv:1102.5474] [INSPIRE].

    Article  Google Scholar 

  17. P.M. Chesler, A.M. García-García and H. Liu, Defect Formation beyond Kibble-Zurek Mechanism and Holography, Phys. Rev. X 5 (2015) 021015 [arXiv:1407.1862] [INSPIRE].

    Google Scholar 

  18. C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis and B.P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature 455 (2008) 948 [arXiv:0807.3323].

    Article  ADS  Google Scholar 

  19. N. Navon, A.L. Gaunt, R.P. Smith and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas, Science 347 (2015) 167 [arXiv:1410.8487].

    Article  ADS  Google Scholar 

  20. L. Chomaz et al., Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas, Nat. Commun. 6 (2015) 6162 [arXiv:1411.3577].

    Article  ADS  Google Scholar 

  21. S.-Z. Lin et al., Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics, Nature Phys. 10 (2014) 970 [arXiv:1506.05021] [INSPIRE].

    Article  ADS  Google Scholar 

  22. B. Ko, J.W. Park and Y. Shin, Kibble-Zurek universality in a strongly interacting Fermi superfluid, Nature Phys. 15 (2019) 1227 [arXiv:1902.06922] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B.I. Halperin, Statistical mechanics of topological defects, in Physics of Defects, proceedings of Les Houches, Session XXXV 1980 NATO ASI, R. Ballan, M. Kléman and J. Poirier, eds., p. 816, North-Holland Press (1981).

  24. F. Liu and G.F. Mazenko, Defect-defect correlation in the dynamics of first-order phase transitions, Phys. Rev. B 46 (1992) 5963 [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. del Campo, Universal statistics of topological defects formed in a quantum phase transition, Phys. Rev. Lett. 121 (2018) 200601 [arXiv:1806.10646] [INSPIRE].

    Article  Google Scholar 

  26. J.-M. Cui, F.J. Gómez-Ruiz, Y.-F. Huang, C.-F. Li, G.-C. Guo and A. del Campo, Experimentally testing quantum critical dynamics beyond the Kibble-Zurek mechanism, Comm. Phys. 3 (2020) 44 [arXiv:1903.02145].

    Article  ADS  Google Scholar 

  27. F.J. Gómez-Ruiz, J.J. Mayo and A. del Campo, Full counting statistics of topological defects after crossing a phase transition, Phys. Rev. Lett. 124 (2020) 240602 [arXiv:1912.04679] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. del Campo, A. Retzker and M.B. Plenio, The inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation, New J. Phys. 13 (2011) 083022.

    Article  Google Scholar 

  30. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  31. E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, (2003) [hep-th/0307041] [INSPIRE].

  32. O. Doménech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent gauge fields in holographic superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically Anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Laver and E.M. Forgan, Magnetic flux lines in type-II superconductors and the ‘hairy ball’ theorem, Nat. Commun. 1 (2010) 45.

    Article  ADS  Google Scholar 

  35. L. Le Cam, An approximation theorem for the poisson binomial distribution, Pac. J. Math. 10 (1960) 1181.

    Article  MathSciNet  Google Scholar 

  36. L. de Haan and A.F. Ferreira, Extreme quantile and tail estimation, in Extreme Value Theory: An Introduction, Springer New York, U.S.A. (2006), pp. 127–154, [DOI].

  37. M. Molloy and B. Reed, The chernoff bound, in Graph Colouring and the Probabilistic Method, Springer Berlin Heidelberg, Germany (2002), pp. 43–46, [DOI].

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg, Luxembourg

    Adolfo del Campo

  2. Donostia International Physics Center, E-20018, San Sebastián, Spain

    Adolfo del Campo & Fernando Javier Gómez-Ruiz

  3. IKERBASQUE, Basque Foundation for Science, E-48013, Bilbao, Spain

    Adolfo del Campo

  4. Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA

    Adolfo del Campo

  5. Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C., Colombia

    Fernando Javier Gómez-Ruiz

  6. Center for Gravitational Physics, Department of Space Science & International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China

    Zhi-Hong Li & Hai-Qing Zhang

  7. School of Science, Kunming University of Science and Technology, Kunming, 650500, China

    Chuan-Yin Xia

  8. Center for Gravitation and Cosmology, College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, China

    Hua-Bi Zeng

Authors
  1. Adolfo del Campo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fernando Javier Gómez-Ruiz
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhi-Hong Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Chuan-Yin Xia
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Hua-Bi Zeng
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Hai-Qing Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Fernando Javier Gómez-Ruiz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.02171

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

del Campo, A., Gómez-Ruiz, F.J., Li, ZH. et al. Universal statistics of vortices in a newborn holographic superconductor: beyond the Kibble-Zurek mechanism. J. High Energ. Phys. 2021, 61 (2021). https://doi.org/10.1007/JHEP06(2021)061

Download citation

  • Received: 16 March 2021

  • Accepted: 24 May 2021

  • Published: 09 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)061

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)
  • Lattice Models of Gravity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.