Skip to main content

Quasi anomalous knowledge: searching for new physics with embedded knowledge

A preprint version of the article is available at arXiv.

Abstract

Discoveries of new phenomena often involve a dedicated search for a hypothetical physics signature. Recently, novel deep learning techniques have emerged for anomaly detection in the absence of a signal prior. However, by ignoring signal priors, the sensitivity of these approaches is significantly reduced. We present a new strategy dubbed Quasi Anomalous Knowledge (QUAK), whereby we introduce alternative signal priors that capture some of the salient features of new physics signatures, allowing for the recovery of sensitivity even when the alternative signal is incorrect. This approach can be applied to a broad range of physics models and neural network architectures. In this paper, we apply QUAK to anomaly detection of new physics events at the CERN Large Hadron Collider utilizing variational autoencoders with normalizing flow.

References

  1. G. Kasieczka et al., The LHC olympics 2020: a community challenge for anomaly detection in high energy physics, arXiv:2101.08320 [INSPIRE].

  2. B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkovič, Bump hunting in latent space, arXiv:2103.06595 [INSPIRE].

  3. G. Stein, U. Seljak and B. Dai, Unsupervised in-distribution anomaly detection of new physics through conditional density estimation, in 34th conference on neural information processing systems, (2020) [arXiv:2012.11638] [INSPIRE].

  4. B. M. Dillon, D. A. Faroughy, J. F. Kamenik and M. Szewc, Learning the latent structure of collider events, JHEP 10 (2020) 206 [arXiv:2005.12319] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  5. V. Mikuni and F. Canelli, ABCNet: an attention-based method for particle tagging, Eur. Phys. J. Plus 135 (2020) 463 [arXiv:2001.05311] [INSPIRE].

    Article  Google Scholar 

  6. J. H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing weak- and unsupervised methods for resonant anomaly detection, arXiv:2104.02092 [INSPIRE].

  7. K. Benkendorfer, L. L. Pottier and B. Nachman, Simulation-assisted decorrelation for resonant anomaly detection, arXiv:2009.02205 [INSPIRE].

  8. E. M. Metodiev, B. Nachman and J. Thaler, Classification without labels: learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with machine learning, Phys. Rev. D 99 (2019) 014038 [arXiv:1902.02634] [INSPIRE].

    Article  ADS  Google Scholar 

  11. B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson, QCD or what?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].

    Article  ADS  Google Scholar 

  14. O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant, Variational autoencoders for new physics mining at the Large Hadron Collider, JHEP 05 (2019) 036 [arXiv:1811.10276] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Kuusela, T. Vatanen, E. Malmi, T. Raiko, T. Aaltonen and Y. Nagai, Semi-supervised anomaly detection — towards model-independent searches of new physics, J. Phys. Conf. Ser. 368 (2012) 012032.

    Article  Google Scholar 

  16. T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].

  17. T. Heimel, G. Kasieczka, T. Plehn and J. Thompson, QCD or what?, SciPost Phys. 6 (2019) 030.

    Article  ADS  Google Scholar 

  18. A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty detection meets collider physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81 (2021) 89 [arXiv:1912.12155] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. T. D’Agnolo and A. Wulzer, Learning new physics from a machine, Phys. Rev. D 99 (2019) 015014 [arXiv:1806.02350] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Crispim Romão, N. F. Castro and R. Pedro, Finding new physics without learning about it: anomaly detection as a tool for searches at colliders, Eur. Phys. J. C 81 (2021) 27 [arXiv:2006.05432] [INSPIRE].

    Article  ADS  Google Scholar 

  23. O. Amram and C. M. Suarez, Tag n’ train: a technique to train improved classifiers on unlabeled data, JHEP 01 (2021) 153 [arXiv:2002.12376] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz layer, SciPost Phys. 5 (2018) 028.

    Article  ADS  Google Scholar 

  25. C. Choy, J. Gwak and S. Savarese, 4d spatio-temporal convnets: Minkowski convolutional neural networks, arXiv:1904.08755.

  26. A. Bogatskiy, B. Anderson, J. T. Offermann, M. Roussi, D. W. Miller and R. Kondor, Lorentz group equivariant neural network for particle physics, arXiv:2006.04780 [INSPIRE].

  27. Y. LeCun and C. Cortes, MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/.

  28. G. Kasieczka, B. Nachman and D. Shih, Official datasets for LHC olympics 2020 anomaly detection challenge, Zenodo, (2019).

  29. T. Chen, S. Kornblith, K. Swersky, M. Norouzi and G. Hinton, Big self-supervised models are strong semi-supervised learners, arXiv:2006.10029.

  30. Y. Ouali, C. Hudelot and M. Tami, An overview of deep semi-supervised learning, arXiv:2006.05278.

  31. D. Hendrycks, M. Mazeika, S. Kadavath and D. Song, Using self-supervised learning can improve model robustness and uncertainty, arXiv:1906.12340.

  32. L. Ruff et al., Deep semi-supervised anomaly detection, arXiv:1906.02694.

  33. D. Hendrycks, M. Mazeika and T. Dietterich, Deep anomaly detection with outlier exposure, arXiv:1812.04606.

  34. T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational autoencoders for anomalous jet tagging, arXiv:2007.01850.

  35. D. J. Rezende et al., Normalizing flows on tori and spheres, arXiv:2002.02428 [INSPIRE].

  36. M. S. Albergo, G. Kanwar and P. E. Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory, Phys. Rev. D 100 (2019) 034515 [arXiv:1904.12072] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  37. G. Kanwar et al., Equivariant flow-based sampling for lattice gauge theory, Phys. Rev. Lett. 125 (2020) 121601 [arXiv:2003.06413] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  38. J. Brehmer and K. Cranmer, Flows for simultaneous manifold learning and density estimation, arXiv:2003.13913 [INSPIRE].

  39. E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring phase space with neural importance sampling, SciPost Phys. 8 (2020) 069 [arXiv:2001.05478] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event generation with normalizing flows, Phys. Rev. D 101 (2020) 076002 [arXiv:2001.10028] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C. Gao, J. Isaacson and C. Krause, i-flow: high-dimensional integration and sampling with normalizing flows, Mach. Learn. Sci. Tech. 1 (2020) 045023 [arXiv:2001.05486] [INSPIRE].

  42. S. Choi, J. Lim and H. Oh, Data-driven estimation of background distribution through neural autoregressive flows, arXiv:2008.03636 [INSPIRE].

  43. Y. Lu, J. Collado, D. Whiteson and P. Baldi, Sparse autoregressive models for scalable generation of sparse images in particle physics, Phys. Rev. D 103 (2021) 036012 [arXiv:2009.14017] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Bieringer et al., Measuring QCD splittings with invertible networks, arXiv:2012.09873 [INSPIRE].

  45. J. Hollingsworth, M. Ratz, P. Tanedo and D. Whiteson, Efficient sampling of constrained high-dimensional theoretical spaces with machine learning, arXiv:2103.06957 [INSPIRE].

  46. D. P. Kingma and M. Welling, Auto-encoding variational Bayes, arXiv:1312.6114 [INSPIRE].

  47. S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz and S. Bengio, Generating sentences from a continuous space, in Proceedings of the 20th SIGNLL conference on computational natural language learning, Association for Computational Linguistics, (2016), pg. 10

  48. D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, arXiv:1505.05770.

  49. D. Boyda et al., Sampling using SU(N ) gauge equivariant flows, Phys. Rev. D 103 (2021) 074504 [arXiv:2008.05456] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  50. DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  51. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  52. T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  53. T. Sjöstrand, S. Mrenna and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  54. M. Cacciari and G. P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  55. M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N -subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  59. K. Datta and A. Larkoski, How much information is in a jet?, JHEP 06 (2017) 073 [arXiv:1704.08249] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G. Papamakarios, T. Pavlakou and I. Murray, Masked autoregressive flow for density estimation, arXiv:1705.07057.

  61. I. Higgins et al., beta-vae: learning basic visual concepts with a constrained variational framework, in ICLR, (2017).

  62. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  63. S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv:1502.03167 [INSPIRE].

  64. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580.

  65. J. Dolen, P. Harris, S. Marzani, S. Rappoccio and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156 [arXiv:1603.00027] [INSPIRE].

    Article  ADS  Google Scholar 

  66. I. Moult, B. Nachman and D. Neill, Convolved substructure: analytically decorrelating jet substructure observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J. Stevens and M. Williams, uBoost: a boosting method for producing uniform selection efficiencies from multivariate classifiers, 2013 JINST 8 P12013 [arXiv:1305.7248] [INSPIRE].

  68. C. Shimmin et al., Decorrelated jet substructure tagging using adversarial neural networks, Phys. Rev. D 96 (2017) 074034 [arXiv:1703.03507] [INSPIRE].

    Article  ADS  Google Scholar 

  69. L. Bradshaw, R. K. Mishra, A. Mitridate and B. Ostdiek, Mass agnostic jet taggers, SciPost Phys. 8 (2020) 011.

    Article  ADS  Google Scholar 

  70. ATLAS collaboration, Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in ATLAS, Tech. Rep. ATL-PHYS-PUB-2018-014, CERN, Geneva, Switzerland (2018).

  71. G. Kasieczka and D. Shih, Robust jet classifiers through distance correlation, Phys. Rev. Lett. 125 (2020) 122001 [arXiv:2001.05310] [INSPIRE].

    Article  ADS  Google Scholar 

  72. G. Kasieczka, B. Nachman, M. D. Schwartz and D. Shih, Automating the ABCD method with machine learning, Phys. Rev. D 103 (2021) 035021 [arXiv:2007.14400] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  73. CMS collaboration, A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV, Eur. Phys. J. C 80 (2020) 237 [arXiv:1906.05977] [INSPIRE].

  74. CMS collaboration, Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 12 (2020) 085 [arXiv:2006.13251] [INSPIRE].

  75. CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].

  76. CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112007 [arXiv:1909.04114] [INSPIRE].

  77. ATLAS collaboration, Search for diboson resonances in hadronic final states in 139 fb1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 09 (2019) 091 [Erratum ibid. 06 (2020) 042] [arXiv:1906.08589] [INSPIRE].

  78. CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].

  79. CMS collaboration, Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 112014 [arXiv:1808.03124] [INSPIRE].

  80. ATLAS collaboration, Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV, Eur. Phys. J. C 79 (2019) 836 [arXiv:1906.11005] [INSPIRE].

  81. CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].

  82. CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].

  83. S. Wunsch, S. Jörger, R. Wolf and G. Quast, Reducing the dependence of the neural network function to systematic uncertainties in the input space, Comput. Softw. Big Sci. 4 (2020) 5 [arXiv:1907.11674] [INSPIRE].

    Article  Google Scholar 

  84. C. Englert, P. Galler, P. Harris and M. Spannowsky, Machine learning uncertainties with adversarial neural networks, Eur. Phys. J. C 79 (2019) 4 [arXiv:1807.08763] [INSPIRE].

    Article  ADS  Google Scholar 

  85. L.-G. Xia, QBDT, a new boosting decision tree method with systematical uncertainties into training for high energy physics, Nucl. Instrum. Meth. A 930 (2019) 15 [arXiv:1810.08387] [INSPIRE].

    Article  ADS  Google Scholar 

  86. G. Louppe, M. Kagan and K. Cranmer, Learning to pivot with adversarial networks, arXiv:1611.01046 [INSPIRE].

  87. P. T. Komiske, E. M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear basis for jet substructure, JHEP 04 (2018) 013 [arXiv:1712.07124] [INSPIRE].

    Article  ADS  Google Scholar 

  88. P. T. Komiske, E. M. Metodiev and J. Thaler, Metric space of collider events, Phys. Rev. Lett. 123 (2019) 041801 [arXiv:1902.02346] [INSPIRE].

    Article  ADS  Google Scholar 

  89. P. C. Harris, D. S. Rankin and C. Mantilla Suarez, An approach to constraining the Higgs width at the LHC and HL-LHC, arXiv:1910.02082 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Eon Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2011.03550

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, S.E., Rankin, D., Udrescu, SM. et al. Quasi anomalous knowledge: searching for new physics with embedded knowledge. J. High Energ. Phys. 2021, 30 (2021). https://doi.org/10.1007/JHEP06(2021)030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2021)030

Keywords

  • Beyond Standard Model
  • Exotics
  • Jet substructure
  • Hadron-Hadron scattering (experiments)
  • Jets