Skip to main content

Collective modes of polarizable holographic media in magnetic fields

A preprint version of the article is available at arXiv.

Abstract

We consider a neutral holographic plasma with dynamical electromagnetic interactions in a finite external magnetic field. The Coulomb interactions are introduced via mixed boundary conditions for the Maxwell gauge field. The collective modes at finite wave-vector are analyzed in detail and compared to the magneto-hydrodynamics results valid only at small magnetic fields. Surprisingly, at large magnetic field, we observe the appearance of two plasmon-like modes whose corresponding effective plasma frequency grows with the magnetic field and is not supported by any background charge density. Finally, we identify a mode collision which allows us to study the radius of convergence of the linearized hydrodynamics expansion as a function of the external magnetic field. We find that the radius of convergence in momentum space, related to the diffusive transverse electromagnetic mode, increases quadratically with the strength of the magnetic field.

References

  1. S. A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  2. M. Baggioli, Applied Holograph: A Practical Mini-Course, SpringerBriefs in Physics, Springer (2019), [DOI] [arXiv:1908.02667] [INSPIRE].

  3. E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, (2003) [hep-th/0307041] [INSPIRE].

  4. E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  5. W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  6. O. Domenech, M. Montull, A. Pomarol, A. Salvio and P. J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  7. A. Salvio, Superconductivity, Superfluidity and Holography, J. Phys. Conf. Ser. 442 (2013) 012040 [arXiv:1301.0201] [INSPIRE].

    Article  Google Scholar 

  8. A. Salvio, Transitions in Dilaton Holography with Global or Local Symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  9. S. Grozdanov, D. M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP 04 (2019) 141 [arXiv:1707.04182] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  12. S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  13. U. Gran, M. Tornsö and T. Zingg, Holographic Plasmons, JHEP 11 (2018) 176 [arXiv:1712.05672] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  14. U. Gran, M. Tornsö and T. Zingg, Plasmons in Holographic Graphene, SciPost Phys. 8 (2020) 093 [arXiv:1804.02284] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  15. E. Mauri and H. T. C. Stoof, Screening of Coulomb interactions in Holography, JHEP 04 (2019) 035 [arXiv:1811.11795] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  16. A. Romero-Bermúdez, A. Krikun, K. Schalm and J. Zaanen, Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev. B 99 (2019) 235149 [arXiv:1812.03968] [INSPIRE].

    Article  ADS  Google Scholar 

  17. U. Gran, M. Tornsö and T. Zingg, Exotic Holographic Dispersion, JHEP 02 (2019) 032 [arXiv:1808.05867] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  18. U. Gran, M. Tornsö and T. Zingg, Holographic Response of Electron Clouds, JHEP 03 (2019) 019 [arXiv:1810.11416] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  19. O. DeWolfe and K. Higginbotham, Generalized symmetries and 2-groups via electromagnetic duality in AdS/CFT, Phys. Rev. D 103 (2021) 026011 [arXiv:2010.06594] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  20. L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  21. J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  22. M. Baggioli, U. Gran, A. J. Alba, M. Tornsö and T. Zingg, Holographic Plasmon Relaxation with and without Broken Translations, JHEP 09 (2019) 013 [arXiv:1905.00804] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  23. M. Baggioli, U. Gran and M. Tornsö, Transverse Collective Modes in Interacting Holographic Plasmas, JHEP 04 (2020) 106 [arXiv:1912.07321] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  24. J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  25. E. I. Buchbinder, S. E. Vazquez and A. Buchel, Sound Waves in (2+1) Dimensional Holographic Magnetic Fluids, JHEP 12 (2008) 090 [arXiv:0810.4094] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  26. E. I. Buchbinder and A. Buchel, Relativistic Conformal Magneto-Hydrodynamics from Holography, Phys. Lett. B 678 (2009) 135 [arXiv:0902.3170] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  27. J. Hansen and P. Kraus, Nonlinear Magnetohydrodynamics from Gravity, JHEP 04 (2009) 048 [arXiv:0811.3468] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  28. X.-G. Huang, A. Sedrakian and D. H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields, Annals Phys. 326 (2011) 3075 [arXiv:1108.0602] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  29. P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  30. D. Montenegro, L. Tinti and G. Torrieri, Ideal relativistic fluid limit for a medium with polarization, Phys. Rev. D 96 (2017) 056012 [Addendum ibid. 96 (2017) 079901] [arXiv:1701.08263] [INSPIRE].

  31. Y. Hirono, Chiral magnetohydrodynamics for heavy-ion collisions, Nucl. Phys. A 967 (2017) 233 [arXiv:1705.09409] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Hattori, Y. Hirono, H.-U. Yee and Y. Yin, MagnetoHydrodynamics with chiral anomaly: phases of collective excitations and instabilities, Phys. Rev. D 100 (2019) 065023 [arXiv:1711.08450] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  33. J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett. 122 (2019) 141603 [arXiv:1808.01939] [INSPIRE].

    Article  ADS  Google Scholar 

  34. P. Glorioso and D. T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].

  35. J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, JHEP 01 (2020) 041 [arXiv:1811.04913] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  36. M. Hongo and K. Hattori, Revisiting relativistic magnetohydrodynamics from quantum electrodynamics, JHEP 02 (2021) 011 [arXiv:2005.10239] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  37. P. Nozieres and D. Pines, Theory of quantum liquids, Advanced Books Classics, Avalon Publishing (1999).

  38. S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Amoretti, D. K. Brattan, N. Magnoli and M. Scanavino, Magneto-thermal transport implies an incoherent Hall conductivity, JHEP 08 (2020) 097 [arXiv:2005.09662] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  40. G. Policastro, D. T. Son and A. O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Baggioli, M. Vasin, V. V. Brazhkin and K. Trachenko, Gapped momentum states, Phys. Rept. 865 (2020) 1 [arXiv:1904.01419] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  42. S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  43. L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP 07 (2016) 074 [arXiv:1601.03384] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  44. S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D 94 (2016) 054020 [Erratum ibid. 96 (2017) 019903] [arXiv:1605.06061] [INSPIRE].

  47. M. Ammon et al., Chiral hydrodynamics in strong external magnetic fields, JHEP 04 (2021) 078 [arXiv:2012.09183] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  48. M. Baggioli, S. Grieninger and L. Li, Magnetophonons & type-B Goldstones from Hydrodynamics to Holography, JHEP 09 (2020) 037 [arXiv:2005.01725] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  49. S. Grozdanov, P. K. Kovtun, A. O. Starinets and P. Tadić, Convergence of the Gradient Expansion in Hydrodynamics, Phys. Rev. Lett. 122 (2019) 251601 [arXiv:1904.01018] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  50. S. Grozdanov, P. K. Kovtun, A. O. Starinets and P. Tadić, The complex life of hydrodynamic modes, JHEP 11 (2019) 097 [arXiv:1904.12862] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  51. B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP 06 (2018) 059 [arXiv:1803.08058] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  52. N. Abbasi and S. Tahery, Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP 10 (2020) 076 [arXiv:2007.10024] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  53. A. Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum, JHEP 10 (2020) 121 [arXiv:2007.14418] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  54. M. Baggioli, How small hydrodynamics can go, Phys. Rev. D 103 (2021) 086001 [arXiv:2010.05916] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  55. D. Arean, R. A. Davison, B. Goutéraux and K. Suzuki, Hydrodynamic diffusion and its breakdown near AdS2 fixed points, arXiv:2011.12301 [INSPIRE].

  56. N. Wu, M. Baggioli and W.-J. Li, On the universality of AdS2 diffusion bounds and the breakdown of linearized hydrodynamics, JHEP 05 (2021) 014 [arXiv:2102.05810] [INSPIRE].

    Article  ADS  Google Scholar 

  57. E. I. Kiselev, Universal superdiffusive modes in charged two dimensional liquids, arXiv:2102.03121 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ulf Gran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.09969

https://theorylab-sjtu.com/ (Matteo Baggioli).

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baggioli, M., Gran, U. & Tornsö, M. Collective modes of polarizable holographic media in magnetic fields. J. High Energ. Phys. 2021, 14 (2021). https://doi.org/10.1007/JHEP06(2021)014

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2021)014

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • Gauge-gravity correspondence
  • AdS-CFT Correspondence