Abstract
We consider a neutral holographic plasma with dynamical electromagnetic interactions in a finite external magnetic field. The Coulomb interactions are introduced via mixed boundary conditions for the Maxwell gauge field. The collective modes at finite wave-vector are analyzed in detail and compared to the magneto-hydrodynamics results valid only at small magnetic fields. Surprisingly, at large magnetic field, we observe the appearance of two plasmon-like modes whose corresponding effective plasma frequency grows with the magnetic field and is not supported by any background charge density. Finally, we identify a mode collision which allows us to study the radius of convergence of the linearized hydrodynamics expansion as a function of the external magnetic field. We find that the radius of convergence in momentum space, related to the diffusive transverse electromagnetic mode, increases quadratically with the strength of the magnetic field.
References
S. A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
M. Baggioli, Applied Holograph: A Practical Mini-Course, SpringerBriefs in Physics, Springer (2019), [DOI] [arXiv:1908.02667] [INSPIRE].
E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, (2003) [hep-th/0307041] [INSPIRE].
E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].
O. Domenech, M. Montull, A. Pomarol, A. Salvio and P. J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].
A. Salvio, Superconductivity, Superfluidity and Holography, J. Phys. Conf. Ser. 442 (2013) 012040 [arXiv:1301.0201] [INSPIRE].
A. Salvio, Transitions in Dilaton Holography with Global or Local Symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].
S. Grozdanov, D. M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].
D. M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].
S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP 04 (2019) 141 [arXiv:1707.04182] [INSPIRE].
S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].
U. Gran, M. Tornsö and T. Zingg, Holographic Plasmons, JHEP 11 (2018) 176 [arXiv:1712.05672] [INSPIRE].
U. Gran, M. Tornsö and T. Zingg, Plasmons in Holographic Graphene, SciPost Phys. 8 (2020) 093 [arXiv:1804.02284] [INSPIRE].
E. Mauri and H. T. C. Stoof, Screening of Coulomb interactions in Holography, JHEP 04 (2019) 035 [arXiv:1811.11795] [INSPIRE].
A. Romero-Bermúdez, A. Krikun, K. Schalm and J. Zaanen, Anomalous attenuation of plasmons in strange metals and holography, Phys. Rev. B 99 (2019) 235149 [arXiv:1812.03968] [INSPIRE].
U. Gran, M. Tornsö and T. Zingg, Exotic Holographic Dispersion, JHEP 02 (2019) 032 [arXiv:1808.05867] [INSPIRE].
U. Gran, M. Tornsö and T. Zingg, Holographic Response of Electron Clouds, JHEP 03 (2019) 019 [arXiv:1810.11416] [INSPIRE].
O. DeWolfe and K. Higginbotham, Generalized symmetries and 2-groups via electromagnetic duality in AdS/CFT, Phys. Rev. D 103 (2021) 026011 [arXiv:2010.06594] [INSPIRE].
L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolà s, Holographic Phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].
J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].
M. Baggioli, U. Gran, A. J. Alba, M. Tornsö and T. Zingg, Holographic Plasmon Relaxation with and without Broken Translations, JHEP 09 (2019) 013 [arXiv:1905.00804] [INSPIRE].
M. Baggioli, U. Gran and M. Tornsö, Transverse Collective Modes in Interacting Holographic Plasmas, JHEP 04 (2020) 106 [arXiv:1912.07321] [INSPIRE].
J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].
E. I. Buchbinder, S. E. Vazquez and A. Buchel, Sound Waves in (2+1) Dimensional Holographic Magnetic Fluids, JHEP 12 (2008) 090 [arXiv:0810.4094] [INSPIRE].
E. I. Buchbinder and A. Buchel, Relativistic Conformal Magneto-Hydrodynamics from Holography, Phys. Lett. B 678 (2009) 135 [arXiv:0902.3170] [INSPIRE].
J. Hansen and P. Kraus, Nonlinear Magnetohydrodynamics from Gravity, JHEP 04 (2009) 048 [arXiv:0811.3468] [INSPIRE].
X.-G. Huang, A. Sedrakian and D. H. Rischke, Kubo formulae for relativistic fluids in strong magnetic fields, Annals Phys. 326 (2011) 3075 [arXiv:1108.0602] [INSPIRE].
P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].
D. Montenegro, L. Tinti and G. Torrieri, Ideal relativistic fluid limit for a medium with polarization, Phys. Rev. D 96 (2017) 056012 [Addendum ibid. 96 (2017) 079901] [arXiv:1701.08263] [INSPIRE].
Y. Hirono, Chiral magnetohydrodynamics for heavy-ion collisions, Nucl. Phys. A 967 (2017) 233 [arXiv:1705.09409] [INSPIRE].
K. Hattori, Y. Hirono, H.-U. Yee and Y. Yin, MagnetoHydrodynamics with chiral anomaly: phases of collective excitations and instabilities, Phys. Rev. D 100 (2019) 065023 [arXiv:1711.08450] [INSPIRE].
J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett. 122 (2019) 141603 [arXiv:1808.01939] [INSPIRE].
P. Glorioso and D. T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].
J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, JHEP 01 (2020) 041 [arXiv:1811.04913] [INSPIRE].
M. Hongo and K. Hattori, Revisiting relativistic magnetohydrodynamics from quantum electrodynamics, JHEP 02 (2021) 011 [arXiv:2005.10239] [INSPIRE].
P. Nozieres and D. Pines, Theory of quantum liquids, Advanced Books Classics, Avalon Publishing (1999).
S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
A. Amoretti, D. K. Brattan, N. Magnoli and M. Scanavino, Magneto-thermal transport implies an incoherent Hall conductivity, JHEP 08 (2020) 097 [arXiv:2005.09662] [INSPIRE].
G. Policastro, D. T. Son and A. O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
M. Baggioli, M. Vasin, V. V. Brazhkin and K. Trachenko, Gapped momentum states, Phys. Rept. 865 (2020) 1 [arXiv:1904.01419] [INSPIRE].
S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].
L. Alberte, M. Baggioli and O. Pujolà s, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP 07 (2016) 074 [arXiv:1601.03384] [INSPIRE].
S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].
A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].
S. I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D 94 (2016) 054020 [Erratum ibid. 96 (2017) 019903] [arXiv:1605.06061] [INSPIRE].
M. Ammon et al., Chiral hydrodynamics in strong external magnetic fields, JHEP 04 (2021) 078 [arXiv:2012.09183] [INSPIRE].
M. Baggioli, S. Grieninger and L. Li, Magnetophonons & type-B Goldstones from Hydrodynamics to Holography, JHEP 09 (2020) 037 [arXiv:2005.01725] [INSPIRE].
S. Grozdanov, P. K. Kovtun, A. O. Starinets and P. Tadić, Convergence of the Gradient Expansion in Hydrodynamics, Phys. Rev. Lett. 122 (2019) 251601 [arXiv:1904.01018] [INSPIRE].
S. Grozdanov, P. K. Kovtun, A. O. Starinets and P. Tadić, The complex life of hydrodynamic modes, JHEP 11 (2019) 097 [arXiv:1904.12862] [INSPIRE].
B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP 06 (2018) 059 [arXiv:1803.08058] [INSPIRE].
N. Abbasi and S. Tahery, Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP 10 (2020) 076 [arXiv:2007.10024] [INSPIRE].
A. Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum, JHEP 10 (2020) 121 [arXiv:2007.14418] [INSPIRE].
M. Baggioli, How small hydrodynamics can go, Phys. Rev. D 103 (2021) 086001 [arXiv:2010.05916] [INSPIRE].
D. Arean, R. A. Davison, B. Goutéraux and K. Suzuki, Hydrodynamic diffusion and its breakdown near AdS2 fixed points, arXiv:2011.12301 [INSPIRE].
N. Wu, M. Baggioli and W.-J. Li, On the universality of AdS2 diffusion bounds and the breakdown of linearized hydrodynamics, JHEP 05 (2021) 014 [arXiv:2102.05810] [INSPIRE].
E. I. Kiselev, Universal superdiffusive modes in charged two dimensional liquids, arXiv:2102.03121 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2102.09969
https://theorylab-sjtu.com/ (Matteo Baggioli).
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Baggioli, M., Gran, U. & Tornsö, M. Collective modes of polarizable holographic media in magnetic fields. J. High Energ. Phys. 2021, 14 (2021). https://doi.org/10.1007/JHEP06(2021)014
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2021)014
Keywords
- Holography and condensed matter physics (AdS/CMT)
- Gauge-gravity correspondence
- AdS-CFT Correspondence