Skip to main content

Neutrino and Z′ phenomenology in an anomaly-free U(1) extension: role of higher-dimensional operators

A preprint version of the article is available at arXiv.

Abstract

We consider an anomaly-free U(1) extension of the Standard Model with three right-handed neutrinos (RHNs) and two complex scalars, wherein the charge assignments preclude all tree-level mass terms for the neutrinos. Considering this setup, in turn, to be only a low-energy effective theory, we introduce higher-dimensional terms a la Froggatt-Nielsen to naturally generate tiny neutrino masses. One of the RHNs turns out to be very light, thereby constituting the main decay mode for the Z′ and hence relaxing the LHC dilepton resonance search constraints. The lightest RHN has a lifetime comparable to or bigger than the age of the Universe, and, hence, could account for a non-negligible fraction of the dark matter.

References

  1. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  2. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    ADS  Google Scholar 

  3. H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [INSPIRE].

  4. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].

  5. A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [INSPIRE].

  6. E. Ma, H. Sawanaka and M. Tanimoto, Quark Masses and Mixing with A4 Family Symmetry, Phys. Lett. B 641 (2006) 301 [hep-ph/0606103] [INSPIRE].

  7. G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    ADS  Google Scholar 

  8. S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

    ADS  Google Scholar 

  9. E. Ma, N. Pollard, R. Srivastava and M. Zakeri, Gauge B − L Model with Residual Z3 Symmetry, Phys. Lett. B 750 (2015) 135 [arXiv:1507.03943] [INSPIRE].

    ADS  MATH  Google Scholar 

  10. A. Davidson, M. Koca and K.C. Wali, U(1) as the Minimal Horizontal Gauge Symmetry, Phys. Rev. Lett. 43 (1979) 92 [INSPIRE].

    ADS  Google Scholar 

  11. A. Davidson, V.P. Nair and K.C. Wali, Peccei-Quinn Symmetry as Flavor Symmetry and Grand Unification, Phys. Rev. D 29 (1984) 1504 [INSPIRE].

    ADS  Google Scholar 

  12. M.J. Strassler, Generating a fermion mass hierarchy in a composite supersymmetric standard model, Phys. Lett. B 376 (1996) 119 [hep-ph/9510342] [INSPIRE].

  13. M. Hayakawa, Mass hierarchy from compositeness hierarchy in supersymmetric gauge theory, Phys. Lett. B 408 (1997) 207 [hep-ph/9704329] [INSPIRE].

  14. N. Haba and N. Okamura, Yukawa interaction from a SUSY composite model, Mod. Phys. Lett. A 13 (1998) 759 [hep-ph/9709239] [INSPIRE].

  15. N. Haba, Composite model with neutrino large mixing, Phys. Rev. D 59 (1999) 035011 [hep-ph/9807552] [INSPIRE].

  16. K.R. Dienes, E. Dudas and T. Gherghetta, Neutrino oscillations without neutrino masses or heavy mass scales: A higher dimensional seesaw mechanism, Nucl. Phys. B 557 (1999) 25 [hep-ph/9811428] [INSPIRE].

  17. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2001) 024032 [hep-ph/9811448] [INSPIRE].

  18. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

  19. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

  20. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

  21. Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

  22. SNO collaboration, Measurement of the rate of νe + d → p + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].

  23. Double CHOOZ collaboration, Indication of Reactor \( {\overline{v}}_e \)Disappearance in the Double CHOOZ Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

  24. Daya Bay collaboration, Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

  25. RENO collaboration, Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

  26. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  27. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23 , δCP and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

  28. KATRIN collaboration, Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN, Phys. Rev. Lett. 123 (2019) 221802 [arXiv:1909.06048] [INSPIRE].

  29. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    ADS  Google Scholar 

  30. F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

    ADS  Google Scholar 

  31. K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [INSPIRE].

    ADS  Google Scholar 

  32. A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].

    ADS  Google Scholar 

  33. D. Borah, S. Sadhukhan and S. Sahoo, Lepton Portal Limit of Inert Higgs Doublet Dark Matter with Radiative Neutrino Mass, Phys. Lett. B 771 (2017) 624 [arXiv:1703.08674] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. Phys. 5 (2017) 63 [arXiv:1706.08524].

    Google Scholar 

  35. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    ADS  Google Scholar 

  36. K.S. Babu, TASI Lectures on Flavor Physics, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics on The dawn of the LHC era (TASI 2008): Boulder, U.S.A., June 2–27, 2008, pp. 49–123, 2010, DOI [arXiv:0910.2948] [INSPIRE].

  37. R.E. Marshak and R.N. Mohapatra, Quark-Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. 91B (1980) 222 [INSPIRE].

    ADS  Google Scholar 

  38. R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].

  39. S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g-2 and gauged Lμ – Lτ models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].

  40. S. Khalil, Low scale B — L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001 [hep-ph/0611205] [INSPIRE].

  41. S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    ADS  Google Scholar 

  42. S. Khalil, TeV-scale gauged B-L symmetry with inverse seesaw mechanism, Phys. Rev. D 82 (2010) 077702 [arXiv:1004.0013] [INSPIRE].

    ADS  Google Scholar 

  43. W. Chao, Pure Leptonic Gauge Symmetry, Neutrino Masses and Dark Matter, Phys. Lett. B 695 (2011) 157 [arXiv:1005.1024] [INSPIRE].

    ADS  Google Scholar 

  44. J. Heeck and W. Rodejohann, Gauged Lμ − Lτ Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].

    ADS  Google Scholar 

  45. M. Das and S. Mohanty, Leptophilic dark matter in gauged Lμ − Lτ extension of MSSM, Phys. Rev. D 89 (2014) 025004 [arXiv:1306.4505] [INSPIRE].

    ADS  Google Scholar 

  46. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in Lμ – Lτ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].

    ADS  Google Scholar 

  47. S. Baek, H. Okada and K. Yagyu, Flavour Dependent Gauged Radiative Neutrino Mass Model, JHEP 04 (2015) 049 [arXiv:1501.01530] [INSPIRE].

    ADS  Google Scholar 

  48. A. Biswas, S. Choubey and S. Khan, Neutrino Mass, Dark Matter and Anomalous Magnetic Moment of Muon in a U\( {(1)}_{L_{\mu }-{L}_{\tau }} \)Model, JHEP 09 (2016) 147 [arXiv:1608.04194] [INSPIRE].

    ADS  Google Scholar 

  49. A. Biswas, S. Choubey and S. Khan, Neutrino mass, leptogenesis and FIMP dark matter in a U(1)B−L model, Eur. Phys. J. C 77 (2017) 875 [arXiv:1704.00819] [INSPIRE].

    ADS  Google Scholar 

  50. S. Singirala, R. Mohanta and S. Patra, Singlet scalar Dark matter in U(1)B−L models without right-handed neutrinos, Eur. Phys. J. Plus 133 (2018) 477 [arXiv:1704.01107] [INSPIRE].

    Google Scholar 

  51. K. Asai, K. Hamaguchi and N. Nagata, Predictions for the neutrino parameters in the minimal gauged U(1)\( {}_{L_{\mu }-{L}_{\tau }} \)model, Eur. Phys. J. C 77 (2017) 763 [arXiv:1705.00419] [INSPIRE].

    ADS  Google Scholar 

  52. G. Arcadi, T. Hugle and F.S. Queiroz, The Dark Lμ − Lτ Rises via Kinetic Mixing, Phys. Lett. B 784 (2018) 151 [arXiv:1803.05723] [INSPIRE].

    ADS  Google Scholar 

  53. A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged U(1)\( {}_{L_{\mu }-{L}_{\tau }} \)model, JHEP 06 (2018) 117 [arXiv:1805.00651] [INSPIRE].

    ADS  Google Scholar 

  54. H. Banerjee, P. Byakti and S. Roy, Supersymmetric gauged U(1)\( {}_{L_{\mu }-{L}_{\tau }} \)model for neutrinos and the muon (g − 2) anomaly, Phys. Rev. D 98 (2018) 075022 [arXiv:1805.04415] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. S. Jana, V.P. K. and S. Saad, Minimal Dirac neutrino mass models from U (1)R gauge symmetry and left-right asymmetry at colliders, Eur. Phys. J. C 79 (2019) 916 [arXiv:1904.07407] [INSPIRE].

  56. C.H. Nam, U(1) extension of the standard model from short-distance structure of spacetime, Eur. Phys. J. C 79 (2019) 384 [INSPIRE].

    ADS  Google Scholar 

  57. C.H. Nam, A flipped U(1)R extension of the Standard Model, arXiv:1912.12595 [INSPIRE].

  58. J. Erler and P. Langacker, Constraints on extended neutral gauge structures, Phys. Lett. B 456 (1999) 68 [hep-ph/9903476] [INSPIRE].

  59. P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    ADS  Google Scholar 

  60. L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Z’ and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].

    ADS  Google Scholar 

  61. J. Erler, P. Langacker, S. Munir and E. Rojas, Improved Constraints on Z-prime Bosons from Electroweak Precision Data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].

    ADS  Google Scholar 

  62. E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z-prime models: Present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].

    ADS  MATH  Google Scholar 

  63. E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z’ models: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].

    ADS  MATH  Google Scholar 

  64. A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Constraining minimal anomaly free U(1) extensions of the Standard Model, JHEP 11 (2016) 071 [arXiv:1605.04855] [INSPIRE].

    ADS  Google Scholar 

  65. T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of constraints on Z′ models from unitarity and direct searches at the LHC, Phys. Rev. D 98 (2018) 035027 [arXiv:1803.07989] [INSPIRE].

    ADS  Google Scholar 

  66. J. Aebischer, A.J. Buras, M. Cerdà-Sevilla and F. De Fazio, Quark-lepton connections in Z’ mediated FCNC processes: gauge anomaly cancellations at work, JHEP 02 (2020) 183 [arXiv:1912.09308] [INSPIRE].

    ADS  Google Scholar 

  67. E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].

    ADS  Google Scholar 

  68. N. Okada, S. Okada and D. Raut, Natural Z’-portal Majorana dark matter in alternative U(1) extended standard model, Phys. Rev. D 100 (2019) 035022 [arXiv:1811.11927] [INSPIRE].

    ADS  Google Scholar 

  69. F.F. Deppisch, S. Kulkarni and W. Liu, Searching for a light Z′ through Higgs production at the LHC, Phys. Rev. D 100 (2019) 115023 [arXiv:1908.11741] [INSPIRE].

    ADS  Google Scholar 

  70. T. Modak, S. Sadhukhan and R. Srivastava, 750 GeV diphoton excess from gauged B – L symmetry, Phys. Lett. B 756 (2016) 405 [arXiv:1601.00836] [INSPIRE].

    ADS  Google Scholar 

  71. T. Brune and H. Päs, Massive Majorons and constraints on the Majoron-neutrino coupling, Phys. Rev. D 99 (2019) 096005 [arXiv:1808.08158] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  72. A.S. Joshipura and S.D. Rindani, Majoron models and the Higgs search, Phys. Rev. Lett. 69 (1992) 3269 [INSPIRE].

    ADS  Google Scholar 

  73. D. Chang and W.-Y. Keung, Hidden Higgs Boson Models and Stellar Energy Loss, Phys. Lett. B 217 (1989) 238 [INSPIRE].

    ADS  Google Scholar 

  74. M.B. Voloshin and V.I. Zakharov, Measuring QCD Anomalies in Hadronic Transitions Between Onium States, Phys. Rev. Lett. 45 (1980) 688 [INSPIRE].

    ADS  Google Scholar 

  75. R.S. Chivukula, A.G. Cohen, H. Georgi, B. Grinstein and A.V. Manohar, Higgs decay into goldstone bosons, Annals Phys. 192 (1989) 93 [INSPIRE].

    ADS  Google Scholar 

  76. R.E. Shrock and M. Suzuki, Invisible Decays of Higgs Bosons, Phys. Lett. 110B (1982) 250 [INSPIRE].

    ADS  Google Scholar 

  77. L.-F. Li, Y. Liu and L. Wolfenstein, Hidden Higgs particles, Phys. Lett. 159B (1985) 45 [INSPIRE].

    ADS  Google Scholar 

  78. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

  79. A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Minimal anomalous U(1) theories and collider phenomenology, JHEP 02 (2018) 152 [arXiv:1712.03410] [INSPIRE].

    ADS  Google Scholar 

  80. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic Neutral Gauge Bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

  81. S. Antusch, S.F. King, M. Malinsky, L. Velasco-Sevilla and I. Zavala, Flavon Inflation, Phys. Lett. B 666 (2008) 176 [arXiv:0805.0325] [INSPIRE].

    ADS  Google Scholar 

  82. A. Das, Heavy Majorana neutrino pair productions at the LHC in minimal U(1) extended Standard Model, PoS ICHEP2018 (2019) 851.

  83. F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].

    ADS  Google Scholar 

  84. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  85. S. Vagnozzi et al., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503 [arXiv:1701.08172] [INSPIRE].

    ADS  Google Scholar 

  86. S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].

    ADS  Google Scholar 

  87. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Google Scholar 

  88. A. Das, Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework, arXiv:1701.04946 [INSPIRE].

  89. A. Das, N. Okada and D. Raut, Enhanced pair production of heavy Majorana neutrinos at the LHC, Phys. Rev. D 97 (2018) 115023 [arXiv:1710.03377] [INSPIRE].

    ADS  Google Scholar 

  90. A. Das, N. Okada and D. Raut, Heavy Majorana neutrino pair productions at the LHC in minimal U(1) extended Standard Model, Eur. Phys. J. C 78 (2018) 696 [arXiv:1711.09896] [INSPIRE].

    ADS  Google Scholar 

  91. F. Deppisch, S. Kulkarni and W. Liu, Heavy neutrino production via Z′ at the lifetime frontier, Phys. Rev. D 100 (2019) 035005 [arXiv:1905.11889] [INSPIRE].

    ADS  Google Scholar 

  92. A. Das, P.S.B. Dev and N. Okada, Long-lived TeV-scale right-handed neutrino production at the LHC in gauged U(1)X model, Phys. Lett. B 799 (2019) 135052 [arXiv:1906.04132].

    Google Scholar 

  93. C.-W. Chiang, G. Cottin, A. Das and S. Mandal, Displaced heavy neutrinos from Z′ decays at the LHC, JHEP 12 (2019) 070 [arXiv:1908.09838] [INSPIRE].

    ADS  Google Scholar 

  94. A. Das, S. Jana, S. Mandal and S. Nandi, Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Phys. Rev. D 99 (2019) 055030 [arXiv:1811.04291] [INSPIRE].

    ADS  Google Scholar 

  95. A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].

    ADS  Google Scholar 

  96. K. Gumus, N. Akchurin, S. Esen and R.M. Harris, CMS Sensitivity to Dijet Resonances, CMS-NOTE-2006-070 (2006).

  97. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Google Scholar 

  98. ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].

  99. CMS collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 f b1 of data at \( \sqrt{s} \) = 13 T eV , CMS-PAS-EXO-19-019 (2019).

  100. ATLAS collaboration, Search for new resonances in mass distributions of jet pairs using 139 fb1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 03 (2020) 145 [arXiv:1910.08447] [INSPIRE].

  101. CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].

  102. E. Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data, J. Phys. Conf. Ser. 898 (2017) 102006 [arXiv:1704.05473] [INSPIRE].

    Google Scholar 

  103. ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

  104. S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].

    ADS  Google Scholar 

  105. M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  106. A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213 [astro-ph/0512509] [INSPIRE].

  107. K.N. Abazajian, M. Markevitch, S.M. Koushiappas and R.C. Hickox, Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds, Phys. Rev. D 75 (2007) 063511 [astro-ph/0611144] [INSPIRE].

  108. H. Kamikado, T. Shindou and E. Takasugi, Froggatt-Nielsen hierarchy and the neutrino mass matrix, arXiv:0805.1338 [INSPIRE].

  109. D. Choudhury and D. Sachdeva, Model independent analysis of MeV scale dark matter: Cosmological constraints, Phys. Rev. D 100 (2019) 035007 [arXiv:1903.06049] [INSPIRE].

    ADS  Google Scholar 

  110. D. Choudhury and D. Sachdeva, Model independent analysis of MeV scale dark matter. II. Implications from e e+ colliders and direct detection, Phys. Rev. D 100 (2019) 075007 [arXiv:1906.06364] [INSPIRE].

  111. C. Arina, A. Beniwal, C. Degrande, J. Heisig and A. Scaffidi, Global fit of pseudo-Nambu-Goldstone Dark Matter, arXiv:1912.04008 [INSPIRE].

  112. Z. Kang, P. Ko and J. Li, New Avenues to Heavy Right-handed Neutrinos with Pair Production at Hadronic Colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].

    ADS  Google Scholar 

  113. X.-G. He, S. Oh, J. Tandean and C.-C. Wen, Large Mixing of Light and Heavy Neutrinos in Seesaw Models and the LHC, Phys. Rev. D 80 (2009) 073012 [arXiv:0907.1607] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Deka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.02349

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhury, D., Deka, K., Mandal, T. et al. Neutrino and Z′ phenomenology in an anomaly-free U(1) extension: role of higher-dimensional operators. J. High Energ. Phys. 2020, 111 (2020). https://doi.org/10.1007/JHEP06(2020)111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2020)111

Keywords

  • Beyond Standard Model
  • Neutrino Physics
  • Gauge Symmetry