Skip to main content

Comparatively light extra Higgs states as signature of SUSY SO(10) GUTs with 3rd family Yukawa unification

A preprint version of the article is available at arXiv.

Abstract

We study 3rd family Yukawa unification in the context of supersymmetric (SUSY) SO (10) GUTs and SO(10)-motivated boundary conditions for the SUSY-breaking soft terms. We consider μ < 0 such that the SUSY loop-threshold effects enable a good fit to all third family masses of the charged Standard Model (SM) fermions. We find that fitting the third family masses together with the mass of the SM-like Higgs particle, the scenario predicts the masses of the superpartner particles and of the extra Higgs states of the MSSM: while the sparticles are predicted to be comparatively heavy (above the present LHC bound but within reach of future colliders), the spectrum has the characteristic feature that the lightest new particles are the extra MSSM Higgses. We show that this effect is rather robust with respect to many deformations of the GUT boundary conditions, but turns out to be sensitive to the exactness of top-bottom Yukawa unification. Nevertheless, with moderate deviations of a few percent from exact top-bottom Yukawa unification (stemming e.g. from GUT-threshold corrections or higher-dimensional operators), the scenario still predicts extra MSSM Higgs particles with masses not much above 1.5 TeV, which could be tested e.g. by future LHC searches for ditau decays H0/A0 → ττ . Finding the extra MSSM Higges before the other new MSSM particles could thus be a smoking gun for a Yukawa unified SO(10) GUT.

References

  1. H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

  2. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

  3. H. Georgi, The state of the art — Gauge theories, AIP Conf. Proc. 23 (1975) 575.

  4. R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].

  5. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

  6. M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

  7. T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan Beta regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].

  8. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297.

  9. S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

  10. S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].

  11. S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].

  12. G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa unification and the superpartner mass scale, JHEP 10 (2012) 111 [arXiv:1206.5301] [INSPIRE].

  13. J. Kubo, M. Mondragon, N.D. Tracas and G. Zoupanos, Gauge Yukawa unification in asymptotically nonfree theories, Phys. Lett. B 342 (1995) 155 [hep-th/9409003] [INSPIRE].

  14. R. Rattazzi, U. Sarid and L.J. Hall, Yukawa unification: the good, the bad and the ugly, in Yukawa couplings and the origins of mass. Proceedings, 2nd IFT Workshop, Gainesville, USA, February 11-13, 1994, pp. 232–250, 1994, hep-ph/9405313 [INSPIRE].

  15. B.C. Allanach and S.F. King, Quadruple Yukawa unification in the minimal supersymmetric standard model, Phys. Lett. B 353 (1995) 477 [hep-ph/9504406] [INSPIRE].

  16. J. Kubo, M. Mondragon, S. Shoda and G. Zoupanos, Gauge Yukawa unification in SO(10) SUSY GUTs, Nucl. Phys. B 469 (1996) 3 [hep-ph/9512258] [INSPIRE].

  17. H. Murayama, M. Olechowski and S. Pokorski, Viable t-b-tau Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].

  18. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].

  19. J.A. Bagger, K.T. Matchev, D.M. Pierce and R.-J. Zhang, Gauge and Yukawa unification in models with gauge mediated supersymmetry breaking, Phys. Rev. Lett. 78 (1997) 1002 [Erratum ibid. 78 (1997) 2497] [hep-ph/9611229] [INSPIRE].

  20. K. Tobe and J.D. Wells, Revisiting top bottom tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [INSPIRE].

  21. M. Carena, S. Dimopoulos, C.E.M. Wagner and S. Raby, Fermion masses, mixing angles and supersymmetric SO(10) unification, Phys. Rev. D 52 (1995) 4133 [hep-ph/9503488] [INSPIRE].

  22. N. Polonsky, An Upper bound on the Higgs boson mass from Yukawa unification and a comment on vacuum stability constraints, hep-ph/9406225 [INSPIRE].

  23. H. Baer, S. Kraml and S. Kulkarni, Yukawa-unified natural supersymmetry, JHEP 12 (2012) 066 [arXiv:1208.3039] [INSPIRE].

  24. H. Baer, S. Kraml, S. Sekmen and H. Summy, Prospects for Yukawa Unified SO(10) SUSY GUTs at the CERN LHC, JHEP 10 (2008) 079 [arXiv:0809.0710] [INSPIRE].

  25. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: a Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [INSPIRE].

  26. H. Baer, S. Raza and Q. Shafi, A heavier gluino from t-b-τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].

  27. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with mu greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].

  28. H. Baer and J. Ferrandis, Supersymmetric SO(10) GUT models with Yukawa unification and a positive mu term, Phys. Rev. Lett. 87 (2001) 211803 [hep-ph/0106352] [INSPIRE].

  29. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].

  30. A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].

  31. M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A predictive Yukawa unified SO(10) model: Higgs and sparticle masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].

  32. A. Anandakrishnan, B.C. Bryant and S. Raby, LHC phenomenology of SO(10) models with Yukawa unification II, Phys. Rev. D 90 (2014) 015030 [arXiv:1404.5628] [INSPIRE].

  33. A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].

  34. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].

  35. N. Karagiannakis, G. Lazarides and C. Pallis, Constrained minimal supersymmetric standard model with generalized Yukawa quasi-unification, Phys. Rev. D 87 (2013) 055001 [arXiv:1212.0517] [INSPIRE].

  36. Q. Shafi, S¸.H. Tanyıldızı and C.S. Un, Neutralino dark matter and other LHC predictions from quasi Yukawa unification, Nucl. Phys. B 900 (2015) 400 [arXiv:1503.04196] [INSPIRE].

  37. Z. Altın, Ö . Ö zdal and C.S. Un, Muon g − 2 in an alternative quasi-Yukawa unification with a less fine-tuned seesaw mechanism, Phys. Rev. D 97 (2018) 055007 [arXiv:1703.00229] [INSPIRE].

  38. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].

  39. A. Anandakrishnan and S. Raby, Yukawa unification predictions with effective “mirage” mediation, Phys. Rev. Lett. 111 (2013) 211801 [arXiv:1303.5125] [INSPIRE].

  40. I. Gogoladze, Q. Shafi and C.S. Ün, SO(10) Yukawa unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].

  41. M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP 08 (2011) 147 [arXiv:1107.2764] [INSPIRE].

  42. M. Badziak, M. Olechowski and S. Pokorski, Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification, JHEP 10 (2013) 088 [arXiv:1307.7999] [INSPIRE].

  43. M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].

  44. H. Baer, M.A. Diaz, J. Ferrandis and X. Tata, Sparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification, Phys. Rev. D 61 (2000) 111701 [hep-ph/9907211] [INSPIRE].

  45. H. Baer et al., Yukawa unified supersymmetric SO(10) model: cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [INSPIRE].

  46. D. Auto et al., Yukawa coupling unification in supersymmetric models, JHEP 06 (2003) 023 [hep-ph/0302155] [INSPIRE].

  47. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].

  48. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  49. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].

  50. M.E. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [INSPIRE].

  51. H. Baer, S. Kraml and S. Sekmen, Is ‘just-so’ Higgs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].

  52. D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].

  53. M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan beta solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].

  54. R. Hempfling, On the fine tuning problem in minimal SO(10) SUSY GUT, Phys. Rev. D 52 (1995) 4106 [hep-ph/9405252] [INSPIRE].

  55. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Top quark and Higgs boson masses in supersymmetric models, JHEP 04 (2014) 109 [arXiv:1402.2924] [INSPIRE].

  56. Z. Poh and S. Raby, Yukawa unification in an SO(10) SUSY GUT: SUSY on the edge, Phys. Rev. D 92 (2015) 015017 [arXiv:1505.00264] [INSPIRE].

  57. I. Gogoladze, A. Mustafayev, Q. Shafi and C.S. Un, Yukawa unification and sparticle spectroscopy in gauge mediation models, Phys. Rev. D 91 (2015) 096005 [arXiv:1501.07290] [INSPIRE].

  58. F. Borzumati, M. Olechowski and S. Pokorski, Constraints on the minimal SUSY SO(10) model from cosmology and the b → sγ decay, Phys. Lett. B 349 (1995) 311 [hep-ph/9412379] [INSPIRE].

  59. U. Chattopadhyay and P. Nath, b-τ unification, gμ − 2, the b → s + γ constraint and nonuniversalities, Phys. Rev. D 65 (2002) 075009 [hep-ph/0110341] [INSPIRE].

  60. R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, Dark matter and Bs → μ+ μ with minimal SO(10) soft SUSY breaking, JHEP 04 (2003) 037 [hep-ph/0304101] [INSPIRE].

  61. S. Dar, I. Gogoladze, Q. Shafi and C.S. Un, Sparticle spectroscopy with neutralino dark matter from t-b-τ quasi-Yukawa unification, Phys. Rev. D 84 (2011) 085015 [arXiv:1105.5122] [INSPIRE].

  62. N. Karagiannakis, G. Lazarides and C. Pallis, CMSSM with Yukawa quasi-unification revisited, Phys. Lett. B 704 (2011) 43 [arXiv:1107.0667] [INSPIRE].

  63. D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [INSPIRE].

  64. B. Dutta and Y. Mimura, Yukawa unification with four Higgs doublets in supersymmetric GUT, Phys. Lett. B 790 (2019) 589 [arXiv:1810.08413] [INSPIRE].

  65. A. Hebbar, G.K. Leontaris and Q. Shafi, Masses of third family vector-like quarks and leptons in Yukawa-unified E6 , Phys. Rev. D 93 (2016) 111701 [arXiv:1604.08328] [INSPIRE].

  66. R. Derḿı̌sek and N. McGinnis, Top-bottom-τ Yukawa coupling unification in the MSSM plus one vectorlike family and fermion masses as IR fixed points, Phys. Rev. D 99 (2019) 035033 [arXiv:1810.12474] [INSPIRE].

  67. J. Rosiek, SUSY FLAVOR library and constraints on Bs → μ+ μ decay rate, arXiv:1212.0032 [INSPIRE].

  68. ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].

  69. CMS collaboration, Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 09 (2018) 007 [arXiv:1803.06553] [INSPIRE].

  70. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].

  71. S. Antusch and C. Sluka, Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC, JHEP 07 (2016) 108 [arXiv:1512.06727] [INSPIRE].

  72. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

  73. S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [Adv. Ser. Direct. High Energy Phys. 18 (1998) 1] [hep-ph/9709356] [INSPIRE].

  74. H. Bahl, S. Heinemeyer, W. Hollik and G. Weiglein, Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass, Eur. Phys. J. C 78 (2018) 57 [arXiv:1706.00346] [INSPIRE].

  75. H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].

  76. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].

  77. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

  78. G. Degrassi et al., Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

  79. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

  80. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

  81. J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].

  82. F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].

  83. F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

  84. ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  85. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  86. C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

  87. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].

  88. A. Djouadi et al., The post-Higgs MSSM scenario: habemus MSSM?, Eur. Phys. J. C 73 (2013) 2650 [arXiv:1307.5205] [INSPIRE].

  89. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for nondegenerate seesaw scales, Phys. Lett. B 538 (2002) 87 [hep-ph/0203233] [INSPIRE].

  90. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].

  91. B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hohl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1910.05191

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antusch, S., Hohl, C. & Susič, V. Comparatively light extra Higgs states as signature of SUSY SO(10) GUTs with 3rd family Yukawa unification. J. High Energ. Phys. 2020, 14 (2020). https://doi.org/10.1007/JHEP06(2020)014

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2020)014

Keywords

  • GUT
  • Supersymmetric Standard Model
  • Beyond Standard Model