Abstract
The first untagged decay-time-integrated amplitude analysis of B 0 s → K 0S K±π∓ decays is performed using a sample corresponding to 3.0 fb−1 of pp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K*(892)0,+, K *2 (1430)0,+ and K *0 (1430)0,+, and their charge conjugates. Measurements of the branching fractions of the decay modes B 0 s → K*(892)±K∓ and \( {B}_s^0\to \overset{\left(\hbox{---} \right)}{K^{*}}{(892)}^0\overset{\left(\hbox{---} \right)}{K^0} \) are in agreement with, and more precise than, previous results. The decays B 0 s → K *0 (1430)±K∓ and \( {B}_s^0\to \overset{\left(\hbox{---} \right)}{K_0^{*}}{(1430)}^0\overset{\left(\hbox{---} \right)}{K^0} \) are observed for the first time, each with significance over 10 standard deviations.

Article PDF
References
N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].
M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].
Y. Grossman and M.P. Worah, CP asymmetries in B decays with new physics in decay amplitudes, Phys. Lett. B 395 (1997) 241 [hep-ph/9612269] [INSPIRE].
R. Fleischer, CP violation and the role of electroweak penguins in nonleptonic B decays, Int. J. Mod. Phys. A 12 (1997) 2459 [hep-ph/9612446] [INSPIRE].
D. London and A. Soni, Measuring the CP angle β in hadronic b → s penguin decays, Phys. Lett. B 407 (1997) 61 [hep-ph/9704277] [INSPIRE].
M. Ciuchini et al., CP violating B decays in the standard model and supersymmetry, Phys. Rev. Lett. 79 (1997) 978 [hep-ph/9704274] [INSPIRE].
Belle collaboration, Time-dependent Dalitz plot measurement of CP parameters in B 0 → K 0 s π + π − decays, Phys. Rev. D 79 (2009) 072004 [arXiv:0811.3665] [INSPIRE].
BaBar collaboration, Time-dependent amplitude analysis of B 0 → K 0 S π + π −, Phys. Rev. D 80 (2009) 112001 [arXiv:0905.3615] [INSPIRE].
Belle collaboration, Measurement of CP-violating asymmetries in B 0 → K + K − K 0 S decays with a time-dependent Dalitz approach, Phys. Rev. D 82 (2010) 073011 [arXiv:1007.3848] [INSPIRE].
BaBar collaboration, Study of CP-violation in Dalitz-plot analyses of B 0 → K + K − K 0 S , B + → K + K − K + and B + → K 0 S K 0 S K +, Phys. Rev. D 85 (2012) 112010 [arXiv:1201.5897] [INSPIRE].
LHCb collaboration, Measurement of CP asymmetries in two-body B 0( s) -meson decays to charged pions and kaons, Phys. Rev. D 98 (2018) 032004 [arXiv:1805.06759] [INSPIRE].
LHCb collaboration, Measurement of CP-violation in B 0 s → ϕϕ decays, Phys. Rev. D 90 (2014) 052011 [arXiv:1407.2222] [INSPIRE].
LHCb collaboration, Measurement of CP-violation in the B 0 s → ϕϕ decay and search for the B 0 → ϕϕ decay, LHCb-CONF-2018-001 (2018).
LHCb collaboration, First measurement of the CP-violating phase \( {\phi}_s^{d\overline{d}} \) in B 0 s → (K + π −)(K − π +) decays, JHEP 03 (2018) 140 [arXiv:1712.08683] [INSPIRE].
LHCb collaboration, Study of B 0( s) → K 0 S h + h ′ − decays with first observation of B 0 s → K 0 S K ± π ∓ and B 0 s → K 0 S π + π −, JHEP 10 (2013) 143 [arXiv:1307.7648] [INSPIRE].
LHCb collaboration, Updated branching fraction measurements of B 0( s) → K 0 S h + h ′ − decays, JHEP 11 (2017) 027 [arXiv:1707.01665] [INSPIRE].
LHCb collaboration, Observation of B 0 s → K ∗ ± K ∓ and evidence for B 0 s → K ∗ − π + decays, New J. Phys. 16 (2014) 123001 [arXiv:1407.7704] [INSPIRE].
LHCb collaboration, First observation of the decay B 0 s → K 0 S K ∗(892)0 at LHCb, JHEP 01 (2016) 012 [arXiv:1506.08634] [INSPIRE].
M. Gronau, D. Pirjol, A. Soni and J. Zupan, Improved method for CKM constraints in charmless three-body B and B s decays, Phys. Rev. D 75 (2007) 014002 [hep-ph/0608243] [INSPIRE].
K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].
LHCb collaboration, Measurement of resonant and CP components in \( {\overline{B}}_s^0\to J/\psi {\pi}^{+}{\pi}^{-} \) decays, Phys. Rev. D 89 (2014) 092006 [arXiv:1402.6248] [INSPIRE].
F. Dettori and D. Guadagnoli, On the model dependence of measured B s -meson branching fractions, Phys. Lett. B 784 (2018) 96 [arXiv:1804.03591] [INSPIRE].
H.-Y. Cheng and C.-K. Chua, Charmless three-body decays of B s mesons, Phys. Rev. D 89 (2014) 074025 [arXiv:1401.5514] [INSPIRE].
Y. Li, Branching Fractions and Direct CP Asymmetries of \( {\overline{B}}_s^0\to {K}^0{h}^{+}{h}^{\prime -}\left({h}^{\left(\prime \right)}=K,\pi \right) \) Decays, Sci. China Phys. Mech. Astron. 58 (2015) 031001 [arXiv:1401.5948] [INSPIRE].
Y. Li, W.-F. Wang, A.-J. Ma and Z.-J. Xiao, Quasi-two-body decays B (s) → K *(892)h → Kπh in perturbative QCD approach, Eur. Phys. J. C 79 (2019) 37 [arXiv:1809.09816] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].
V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
Geant4 collaboration, GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270
Geant4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California U.S.A. (1984).
Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
T. Skwarnicki, A study of the radiative cascade transitions between the ϒ′ and ϒ resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986) [DESY-F31-86-02].
R.H. Dalitz,On the analysis of τ-meson data and the nature of the τ-meson, Phil. Mag. 44 (1953) 1068.
W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552 (2005) 566 [physics/0503191] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
J. Back et al., LAURA ++ : a Dalitz plot fitter, Comput. Phys. Commun. 231 (2018) 198 [arXiv:1711.09854] [INSPIRE].
E. Ben-Haim, R. Brun, B. Echenard and T.E. Latham, JFIT: a framework to obtain combined experimental results through joint fits, arXiv:1409.5080 [INSPIRE].
G.N. Fleming, Recoupling effects in the isobar model. 1. General formalism for three-pion scattering, Phys. Rev. 135 (1964) B551 [INSPIRE].
D. Morgan, Phenomenological analysis of I = 12 single-pion production processes in the energy range 500 to 700 MeV, Phys. Rev. 166 (1968) 1731 [INSPIRE].
D. Herndon, P. Soding and R.J. Cashmore, A generalized isobar model formalism, Phys. Rev. D 11 (1975) 3165 [INSPIRE].
C. Zemach, Three pion decays of unstable particles, Phys. Rev. 133 (1964) B1201 [INSPIRE].
C. Zemach, Use of angular momentum tensors, Phys. Rev. 140 (1965) B97 [INSPIRE].
M. De Cian et al., Measurement of the track finding efficiency, LHCb-PUB-2011-025 (2011).
A. Martín Sanchez, P. Robbe and M.H. Schune, Performances of the LHCb L0 calorimeter trigger, LHCb-PUB-2011-026 (2011).
M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
L. Anderlini et al., The PIDCalib package, LHCb-PUB-2016-021 (2016).
D. Aston et al., A study of K − π + scattering in the reaction K − p → K − π + n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].
W. Dunwoodie, Fits to \( K\pi I=\frac{1}{2} \) S-wave amplitude and phase data, available from http://www.slac.stanford.edu/~wmd/kpi_swave/kpi_swave_fit.note.
M. Williams, How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics, 2010 JINST 5 P09004 [arXiv:1006.3019] [INSPIRE].
A. Rogozhnikov, Reweighting with boosted decision trees, J. Phys. Conf. Ser. 762 (2016) 012036 [arXiv:1608.05806] [INSPIRE].
LHCb collaboration, Measurement of the D + s − D − s production asymmetry in 7 TeV pp collisions, Phys. Lett. B 713 (2012) 186 [arXiv:1205.0897] [INSPIRE].
B. El-Bennich et al., CP violation and kaon-pion interactions in B → Kπ + π − decays, Phys. Rev. D 79 (2009) 094005 [Erratum ibid. D 83 (2011) 039903] [arXiv:0902.3645] [INSPIRE].
LHCb collaboration, Framework TDR for the LHCb Upgrade : Technical Design Report, CERN-LHCC-2012-007 (2012).
LHCb collaboration, Expression of interest for a Phase-II LHCb upgrade: opportunities in flavour physics and beyond, in the HL-LHC era, CERN-LHCC-2017-003 (2017).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.