Skip to main content

Advertisement

SpringerLink
Meronic Einstein-Yang-Mills black hole in 5D and gravitational spin from isospin effect
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 June 2019

Meronic Einstein-Yang-Mills black hole in 5D and gravitational spin from isospin effect

  • Fabrizio Canfora1,
  • Andrés Gomberoff  ORCID: orcid.org/0000-0002-4899-49272,1,
  • Seung Hun Oh3,
  • Francisco Rojas2 &
  • …
  • Patricio Salgado-Rebolledo4 

Journal of High Energy Physics volume 2019, Article number: 81 (2019) Cite this article

  • 236 Accesses

  • 13 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We construct an analytic black hole solution in SU(2) Einstein-Yang-Mills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a non-trivial topological charge. The would-be singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a first-order phase transition, similar to the one occurring in the Reissner-Nordström case is identified. We also show that the solution produces a spin from isospin effect, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS5 case, we study its consequences in the context of the AdS/CFT correspondence.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge, U.K. (2004) [INSPIRE].

  2. J. Greensite, An introduction to the confinement problem, Lect. Notes Phys. 821 (2011) 1 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. R. Jackiw and C. Rebbi, Spin from isospin in a gauge theory, Phys. Rev. Lett. 36 (1976) 1116 [INSPIRE].

  4. P. Hasenfratz and G. ’t Hooft, A fermion-boson puzzle in a gauge theory, Phys. Rev. Lett. 36 (1976) 1119 [INSPIRE].

  5. A.S. Goldhaber, Spin and statistics connection for charge-monopole composites, Phys. Rev. Lett. 36 (1976) 1122 [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Canfora, F. Correa, A. Giacomini and J. Oliva, Exact Meron black holes in four dimensional SU(2) Einstein-Yang-Mills theory, Phys. Lett. B 722 (2013) 364 [arXiv:1208.6042] [INSPIRE].

  7. P. Cordero and C. Teitelboim, Hamiltonian treatment of the spherically symmetric Einstein-Yang-Mills system, Annals Phys. 100 (1976) 607 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Bizon, Colored black holes, Phys. Rev. Lett. 64 (1990) 2844 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. H.P. Künzle and A.K.M. Masood-ul Alam, Spherically symmetric static SU(2) Einstein-Yang-Mills fields, J. Math. Phys. 31 (1990) 928 [INSPIRE].

  10. M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Brihaye, A. Chakrabarti, B. Hartmann and D.H. Tchrakian, Higher order curvature generalizations of Bartnick-McKinnon and colored black hole solutions in D = 5, Phys. Lett. B 561 (2003) 161 [hep-th/0212288] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Okuyama and K.-I. Maeda, Five-dimensional black hole and particle solution with non-Abelian gauge field, Phys. Rev. D 67 (2003) 104012 [gr-qc/0212022] [INSPIRE].

  13. G.W. Gibbons and P.K. Townsend, Self-gravitating Yang monopoles in all dimensions, Class. Quant. Grav. 23 (2006) 4873 [hep-th/0604024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Brihaye and E. Radu, Magnetic solutions in AdS 5 and trace anomalies, Phys. Lett. B 658 (2008) 164 [arXiv:0706.4378] [INSPIRE].

  15. E. Winstanley, Classical Yang-Mills black hole hair in anti-de Sitter space, Lect. Notes Phys. 769 (2009) 49 [arXiv:0801.0527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. S.H. Mazharimousavi and M. Halilsoy, Einstein-Yang-Mills black hole solution in higher dimensions by the Wu-Yang ansatz, Phys. Lett. B 659 (2008) 471 [arXiv:0801.1554] [INSPIRE].

  17. N. Bostani and M.H. Dehghani, Topological black holes of (n + 1)-dimensional Einstein-Yang-Mills gravity, Mod. Phys. Lett. A 25 (2010) 1507 [arXiv:0908.0661] [INSPIRE].

  18. M. Agop and E. Radu, Ricci flat black holes in higher dimensional SU(2) Einstein-Yang-Mills theory with negative cosmological constant, Phys. Lett. B 688 (2010) 88 [INSPIRE].

  19. E. Winstanley, A menagerie of hairy black holes, Springer Proc. Phys. 208 (2018) 39 [arXiv:1510.01669] [INSPIRE].

    Article  Google Scholar 

  20. M.S. Volkov, Hairy black holes in the XX-th and XXI-st centuries, in Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG14), Rome, Italy, 12-18 July 2015, vol. 2, World Scientific, Singapore (2017), pg. 1779 [arXiv:1601.08230] [INSPIRE].

  21. B.L. Shepherd and E. Winstanley, Black holes with \( \mathfrak{s}\mathfrak{u}(N) \) gauge field hair and superconducting horizons, JHEP 01 (2017) 065 [arXiv:1611.04162] [INSPIRE].

  22. M. Sadeghi, Einstein-Yang-Mills AdS black brane solution in massive gravity and viscosity bound, Eur. Phys. J. C 78 (2018) 875 [arXiv:1810.09242] [INSPIRE].

  23. V. de Alfaro, S. Fubini and G. Furlan, A new classical solution of the Yang-Mills field equations, Phys. Lett. B 65 (1976) 163 [INSPIRE].

  24. C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a theory of the strong interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].

    Article  ADS  Google Scholar 

  25. C.G. Callan Jr., R.F. Dashen and D.J. Gross, A mechanism for quark confinement, Phys. Lett. B 66 (1977) 375 [INSPIRE].

  26. J. Glimm and A.M. Jaffe, Meron pairs and quark confinement, Phys. Rev. Lett. 40 (1978) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  27. C.G. Callan Jr., R.F. Dashen and D.J. Gross, A theory of hadronic structure, Phys. Rev. D 19 (1979) 1826 [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Actor, Classical solutions of SU(2) Yang-Mills theories, Rev. Mod. Phys. 51 (1979) 461 [INSPIRE].

  29. F. Lenz, J.W. Negele and M. Thies, Confinement from Merons, Phys. Rev. D 69 (2004) 074009 [hep-th/0306105] [INSPIRE].

  30. F. Canfora and P. Salgado-ReboLledó, Generalized hedgehog ansatz and Gribov copies in regions with nontrivial topologies, Phys. Rev. D 87 (2013) 045023 [arXiv:1302.1264] [INSPIRE].

  31. F. Canfora and H. Maeda, Hedgehog ansatz and its generalization for self-gravitating Skyrmions, Phys. Rev. D 87 (2013) 084049 [arXiv:1302.3232] [INSPIRE].

  32. F. Canfora, Nonlinear superposition law and Skyrme crystals, Phys. Rev. D 88 (2013) 065028 [arXiv:1307.0211] [INSPIRE].

  33. S. Chen, Y. Li and Y. Yang, Exact kink solitons in Skyrme crystals, Phys. Rev. D 89 (2014) 025007 [arXiv:1312.2479] [INSPIRE].

  34. F. Canfora, F. Correa and J. Zanelli, Exact multisoliton solutions in the four-dimensional Skyrme model, Phys. Rev. D 90 (2014) 085002 [arXiv:1406.4136] [INSPIRE].

  35. F. Canfora, A. Giacomini and S.A. Pavluchenko, Cosmological dynamics of gravitating hadron matter, Phys. Rev. D 90 (2014) 043516 [arXiv:1406.1541] [INSPIRE].

  36. F. Canfora and G. Tallarita, Constraining monopoles by topology: an autonomous system, JHEP 09 (2014) 136 [arXiv:1407.0609] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. F. Canfora, M. Di Mauro, M.A. Kurkov and A. Naddeo, SU(N ) multi-Skyrmions at finite volume, Eur. Phys. J. C 75 (2015) 443 [arXiv:1508.07055] [INSPIRE].

  38. S. Chen and Y. Yang, Domain wall equations, Hessian of superpotential and Bogomol’nyi bounds, Nucl. Phys. B 904 (2016) 470 [arXiv:1512.04080] [INSPIRE].

  39. E. Ayon-Beato, F. Canfora and J. Zanelli, Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes, Phys. Lett. B 752 (2016) 201 [arXiv:1509.02659] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Canfora and G. Tallarita, SU(N) BPS monopoles in ℳ2 × S 2, Phys. Rev. D 91 (2015) 085033 [arXiv:1502.02957] [INSPIRE].

  41. F. Canfora and G. Tallarita, Multi-Skyrmions with orientational moduli, Phys. Rev. D 94 (2016) 025037 [arXiv:1607.04140] [INSPIRE].

  42. G. Tallarita and F. Canfora, Multi-Skyrmions on AdS 2 × S 2 , rational maps and popcorn transitions, Nucl. Phys. B 921 (2017) 394 [arXiv:1706.01397] [INSPIRE].

  43. F. Canfora, A. Paliathanasis, T. Taves and J. Zanelli, Cosmological Einstein-Skyrme solutions with nonvanishing topological charge, Phys. Rev. D 95 (2017) 065032 [arXiv:1703.04860] [INSPIRE].

  44. F. Canfora, N. Dimakis and A. Paliathanasis, Topologically nontrivial configurations in the 4d Einstein-nonlinear σ-model system, Phys. Rev. D 96 (2017) 025021 [arXiv:1707.02270] [INSPIRE].

  45. F. Canfora, S.H. Oh and P. Salgado-ReboLledó, Gravitational catalysis of Merons in Einstein-Yang-Mills theory, Phys. Rev. D 96 (2017) 084038 [arXiv:1710.00133] [INSPIRE].

  46. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

  47. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

  48. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

  49. V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  51. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

  52. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

  53. I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].

  54. R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

  55. A.J. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian systems, Accademia Nazionale dei Lincei, Italy (1976) [INSPIRE].

  56. M. Henneaux and C. Teitelboim, Hamiltonian treatment of asymptotically anti-de Sitter spaces, Phys. Lett. B 142 (1984) 355 [INSPIRE].

  57. A. Gomberoff and C. Teitelboim, De Sitter black holes with either of the two horizons as a boundary, Phys. Rev. D 67 (2003) 104024 [hep-th/0302204] [INSPIRE].

  58. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  60. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

  61. J. Louko and S.N. Winters-Hilt, Hamiltonian thermodynamics of the Reissner-Nordström anti-de Sitter black hole, Phys. Rev. D 54 (1996) 2647 [gr-qc/9602003] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

  63. M.N. Saha, The origin of mass in neutrons and protons, Indian J. Phys. 10 (1936) 141.

    MATH  Google Scholar 

  64. M.N. Saha, Note on Dirac’s theory of magnetic poles, Phys. Rev. 75 (1949) 1968 [INSPIRE].

  65. S. Coleman, The magnetic monopole fifty years later, in The unity of the fundamental interactions, Springer, Boston, MA, U.S.A. (1983), pg. 21 [INSPIRE].

  66. D.G. Boulware, L.S. Brown, R.N. Cahn, S.D. Ellis and C.-K. Lee, Scattering on magnetic charge, Phys. Rev. D 14 (1976) 2708 [INSPIRE].

    Article  ADS  Google Scholar 

  67. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum, World Scientific, Singapore (1988) [INSPIRE].

  68. A. Meremianin, Hyperspherical harmonics with arbitrary arguments, J. Math. Phys. 50 (2009) 013526 [arXiv:0807.2128].

  69. D. Harlow, TASI lectures on the emergence of bulk physics in AdS/CFT, PoS(TASI2017)002 (2018) [arXiv:1802.01040] [INSPIRE].

  70. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

  71. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

  72. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  73. J. Zahn, Generalized Wentzell boundary conditions and quantum field theory, Annales Henri Poincaré 19 (2018) 163 [arXiv:1512.05512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. C. Dappiaggi, H.R.C. Ferreira and B.A. Juárez-Aubry, Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type, Phys. Rev. D 97 (2018) 085022 [arXiv:1802.00283] [INSPIRE].

  75. P.B. Pal, Dirac, Majorana and Weyl fermions, Am. J. Phys. 79 (2011) 485 [arXiv:1006.1718] [INSPIRE].

  76. M. Dvornikov, Canonical quantization of a massive Weyl field, Found. Phys. 42 (2012) 1469 [arXiv:1106.3303] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. J.M. Henn and J.C. Plefka, Scattering amplitudes in gauge theories, Lect. Notes Phys. 883 (2014) 1 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  78. G.S. Adkins, C.R. Nappi and E. Witten, Static properties of nucleons in the Skyrme model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].

  79. M. Rho, The Cheshire cat hadrons revisited, hep-ph/0206003 [INSPIRE].

  80. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  81. A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  82. A.L. Fitzpatrick and J. Kaplan, Scattering states in AdS/CFT, arXiv:1104.2597 [INSPIRE].

  83. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  84. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP 05 (2005) 042 [hep-th/0412032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  87. S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [INSPIRE].

    Article  ADS  Google Scholar 

  88. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

  90. M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, in Mathematical methods in modern theoretical physics. Proceedings, International Meeting, School and Workshop, ISPM’98, Tbilisi, Georgia, 5-18 September 1998, pg. 161 [hep-th/9902137] [INSPIRE].

  91. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  92. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].

  93. W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].

  94. J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977) 178.

  95. C.R. Frye and C.J. Efthimiou, Spherical harmonics in p dimensions, arXiv:1205.3548 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia, Chile

    Fabrizio Canfora & Andrés Gomberoff

  2. Facultad de Ingeniería y Ciencias, UAI Physics Center, Universidad Adolfo Ibáñez, Avda. Diagonal Las Torres 2640, Peñalolén, Santiago, Chile

    Andrés Gomberoff & Francisco Rojas

  3. Institute of Convergence Fundamental Studies, School of Liberal Arts, Seoul National University of Science and Technology, Gongreung-ro 232, Nowon-gu, Seoul, 01811, Korea

    Seung Hun Oh

  4. Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

    Patricio Salgado-Rebolledo

Authors
  1. Fabrizio Canfora
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrés Gomberoff
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Seung Hun Oh
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Francisco Rojas
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Patricio Salgado-Rebolledo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrés Gomberoff.

Additional information

ArXiv ePrint: 1812.11231

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Canfora, F., Gomberoff, A., Oh, S.H. et al. Meronic Einstein-Yang-Mills black hole in 5D and gravitational spin from isospin effect. J. High Energ. Phys. 2019, 81 (2019). https://doi.org/10.1007/JHEP06(2019)081

Download citation

  • Received: 31 January 2019

  • Revised: 15 May 2019

  • Accepted: 05 June 2019

  • Published: 18 June 2019

  • DOI: https://doi.org/10.1007/JHEP06(2019)081

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Field Theories in Higher Dimensions
  • Gauge Symmetry
  • Solitons Monopoles and Instantons
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.