Advertisement

Peccei-Quinn symmetry and nucleon decay in renormalizable SUSY SO(10)

  • K. S. Babu
  • Takeshi Fukuyama
  • Saki Khan
  • Shaikh SaadEmail author
Open Access
Regular Article - Theoretical Physics
  • 42 Downloads

Abstract

We suggest simple ways of implementing Peccei-Quinn (PQ) symmetry to solve the strong CP problem in renormalizable SUSY SO(10) models with a minimal Yukawa sector. Realistic fermion mass generation requires that a second pair of Higgs doublets survive down to the PQ scale. We show how unification of gauge couplings can be achieved in this context. Higgsino mediated proton decay rate is strongly suppressed by a factor of (MPQ/MGUT)2, which enables all SUSY particles to have masses of order TeV. With TeV scale SUSY spectrum, \( p\to \overline{v}{K}^{+} \) decay rate is expected to be in the observable range. Lepton flavor violating processes μ →  decay and μ − e conversion in nuclei, induced by the Dirac neutrino Yukawa couplings, are found to be within reach of forthcoming experiments.

Keywords

GUT Neutrino Physics Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  2. [2]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett. 33 (1974) 451 [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    H. Georgi, The State of the ArtGauge Theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  7. [7]
    B. Bajc, G. Senjanović and F. Vissani, bτ unification and large atmospheric mixing: A Case for noncanonical seesaw, Phys. Rev. Lett. 90 (2003) 051802 [hep-ph/0210207] [INSPIRE].
  8. [8]
    T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric SO(10) model, JHEP 11 (2002) 011 [hep-ph/0205066] [INSPIRE].
  9. [9]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10), bτ unification and large neutrino mixings, Phys. Lett. B 570 (2003) 215 [hep-ph/0303055] [INSPIRE].
  10. [10]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP-violation, Phys. Rev. D 68 (2003) 115008 [hep-ph/0308197] [INSPIRE].
  11. [11]
    S. Bertolini, M. Frigerio and M. Malinsky, Fermion masses in SUSY SO(10) with type-II seesaw: A Non-minimal predictive scenario, Phys. Rev. D 70 (2004) 095002 [hep-ph/0406117] [INSPIRE].
  12. [12]
    K.S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, Phys. Rev. D 72 (2005) 115003 [hep-ph/0505200] [INSPIRE].
  13. [13]
    S. Bertolini, T. Schwetz and M. Malinsky, Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs, Phys. Rev. D 73 (2006) 115012 [hep-ph/0605006] [INSPIRE].
  14. [14]
    A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].Google Scholar
  15. [15]
    G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below M GUT, JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    B. Bajc, I. Dorsner and M. Nemevšek, Minimal SO(10) splits supersymmetry, JHEP 11 (2008) 007 [arXiv:0809.1069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    T. Fukuyama, K. Ichikawa and Y. Mimura, Revisiting fermion mass and mixing fits in the minimal SUSY SO(10) GUT, Phys. Rev. D 94 (2016) 075018 [arXiv:1508.07078] [INSPIRE].Google Scholar
  19. [19]
    T. Fukuyama, K. Ichikawa and Y. Mimura, Relation between proton decay and PMNS phase in the minimal SUSY SO(10) GUT, Phys. Lett. B 764 (2017) 114 [arXiv:1609.08640] [INSPIRE].CrossRefzbMATHGoogle Scholar
  20. [20]
    K.S. Babu, B. Bajc and S. Saad, Resurrecting Minimal Yukawa Sector of SUSY SO(10), JHEP 10 (2018) 135 [arXiv:1805.10631] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    T. Deppisch, S. Schacht and M. Spinrath, Confronting SUSY SO(10) with updated Lattice and Neutrino Data, JHEP 01 (2019) 005 [arXiv:1811.02895] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    Daya Bay collaboration, Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  23. [23]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].Google Scholar
  29. [29]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. 104B (1981) 199 [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    J.E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: Gauge coupling unification, proton decay and fermion masses, Phys. Rev. D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].Google Scholar
  32. [32]
    A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQ Models, JHEP 02 (2018) 103 [arXiv:1801.04906] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Hisano, H. Murayama and T. Yanagida, Peccei-Quinn symmetry and suppression of nucleon decay rates in SUSY GUTs, Phys. Lett. B 291 (1992) 263 [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  35. [35]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    K.J. Bae, H. Baer, A. Lessa and H. Serce, Mixed axion-wino dark matter, Front. in Phys. 3 (2015) 49 [arXiv:1502.07198] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    K.J. Bae, H. Baer and H. Serce, Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?, JCAP 06 (2017) 024 [arXiv:1705.01134] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    K.-Y. Choi, J.E. Kim and L. Roszkowski, Review of axino dark matter, J. Korean Phys. Soc. 63 (2013) 1685 [arXiv:1307.3330] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    C.S. Aulakh and R.N. Mohapatra, Implications of Supersymmetric SO(10) Grand Unification, Phys. Rev. D 28 (1983) 217 [INSPIRE].Google Scholar
  40. [40]
    T.E. Clark, T.-K. Kuo and N. Nakagawa, A SO(10) Supersymmetric Grand Unified Theory, Phys. Lett. 115B (1982) 26 [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The Minimal supersymmetric grand unified theory, Phys. Lett. B 588 (2004) 196 [hep-ph/0306242] [INSPIRE].
  42. [42]
    C.S. Aulakh, MSGUTs from germ to bloom: Towards falsifiability and beyond, in Workshop Series on Theoretical High Energy Physics, Roorkee, Uttaranchal, India, March 16-20, 2005 (2005) [hep-ph/0506291] [INSPIRE].
  43. [43]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Fermion mass relations in a supersymmetric SO(10) theory, Phys. Lett. B 634 (2006) 272 [hep-ph/0511352] [INSPIRE].
  44. [44]
    C.S. Aulakh and S.K. Garg, MSGUT: From bloom to doom, Nucl. Phys. B 757 (2006) 47 [hep-ph/0512224] [INSPIRE].
  45. [45]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Suppressing proton decay in the minimal SO(10) model, Phys. Rev. Lett. 94 (2005) 091804 [hep-ph/0412105] [INSPIRE].
  46. [46]
    R.N. Mohapatra and M. Severson, Leptonic CP Violation and Proton Decay in SUSY SO(10), JHEP 09 (2018) 119 [arXiv:1805.05776] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [INSPIRE].
  48. [48]
    T.W.B. Kibble, G. Lazarides and Q. Shafi, Walls Bounded by Strings, Phys. Rev. D 26 (1982) 435 [INSPIRE].Google Scholar
  49. [49]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].
  51. [51]
    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].zbMATHGoogle Scholar
  52. [52]
    P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156 [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    R.L. Davis, Goldstone Bosons in String Models of Galaxy Formation, Phys. Rev. D 32 (1985) 3172 [INSPIRE].Google Scholar
  57. [57]
    R.L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225 [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B 195 (1987) 361 [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    A. Vilenkin and T. Vachaspati, Radiation of Goldstone Bosons From Cosmic Strings, Phys. Rev. D 35 (1987) 1138 [INSPIRE].zbMATHGoogle Scholar
  61. [61]
    S.-Y. Pi, Inflation Without Tears, Phys. Rev. Lett. 52 (1984) 1725 [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    M. Axenides, R.H. Brandenberger and M.S. Turner, Development of Axion Perturbations in an Axion Dominated Universe, Phys. Lett. 126B (1983) 178 [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    D. Seckel and M.S. Turner, Isothermal Density Perturbations in an Axion Dominated Inflationary Universe, Phys. Rev. D 32 (1985) 3178 [INSPIRE].Google Scholar
  64. [64]
    A.D. Linde, Generation of Isothermal Density Perturbations in the Inflationary Universe, Phys. Lett. 158B (1985) 375 [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    A.D. Linde and D.H. Lyth, Axionic domain wall production during inflation, Phys. Lett. B 246 (1990) 353 [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    M.S. Turner and F. Wilczek, Inflationary axion cosmology, Phys. Rev. Lett. 66 (1991) 5 [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    A.D. Linde, Axions in inflationary cosmology, Phys. Lett. B 259 (1991) 38 [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    D.H. Lyth, Axions and inflation: Sitting in the vacuum, Phys. Rev. D 45 (1992) 3394 [INSPIRE].MathSciNetGoogle Scholar
  69. [69]
    M. Kawasaki, T.T. Yanagida and K. Yoshino, Domain wall and isocurvature perturbation problems in axion models, JCAP 11 (2013) 030 [arXiv:1305.5338] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    M. Kawasaki and E. Sonomoto, Domain wall and isocurvature perturbation problems in a supersymmetric axion model, Phys. Rev. D 97 (2018) 083507 [arXiv:1710.07269] [INSPIRE].Google Scholar
  71. [71]
    L. Du, X. Li and D.-X. Zhang, Connection between proton decay suppression and seesaw mechanism in supersymmetric SO(10) models, JHEP 10 (2014) 36 [arXiv:1406.2081] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
  73. [73]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos and K. Tamvakis, Observable Gravitationally Induced Baryon Decay, Phys. Lett. 124B (1983) 484 [INSPIRE].CrossRefGoogle Scholar
  74. [74]
    K.S. Babu and S.M. Barr, Proton decay and realistic models of quark and lepton masses, Phys. Lett. B 381 (1996) 137 [hep-ph/9506261] [INSPIRE].
  75. [75]
    K.S. Babu, J.C. Pati and F. Wilczek, Fermion masses, neutrino oscillations and proton decay in the light of Super-Kamiokande, Nucl. Phys. B 566 (2000) 33 [hep-ph/9812538] [INSPIRE].
  76. [76]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, General formulation for proton decay rate in minimal supersymmetric SO(10) GUT, Eur. Phys. J. C 42 (2005) 191 [hep-ph/0401213] [INSPIRE].
  77. [77]
    H.S. Goh, R.N. Mohapatra, S. Nasri and S.-P. Ng, Proton decay in a minimal SUSY SO(10) model for neutrino mixings, Phys. Lett. B 587 (2004) 105 [hep-ph/0311330] [INSPIRE].
  78. [78]
    P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  79. [79]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  80. [80]
    S. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  81. [81]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  82. [82]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefzbMATHGoogle Scholar
  83. [83]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  86. [86]
    H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].
  87. [87]
    K.S. Babu, Renormalization Group Analysis of the Kobayashi-Maskawa Matrix, Z. Phys. C 35 (1987) 69 [INSPIRE].Google Scholar
  88. [88]
    K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [INSPIRE].
  89. [89]
    P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333] [INSPIRE].
  90. [90]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].
  91. [91]
    V.D. Barger, M.S. Berger and P. Ohmann, Supersymmetric grand unified theories: Two loop evolution of gauge and Yukawa couplings, Phys. Rev. D 47 (1993) 1093 [hep-ph/9209232] [INSPIRE].
  92. [92]
    V.D. Barger, M.S. Berger and P. Ohmann, Universal evolution of CKM matrix elements, Phys. Rev. D 47 (1993) 2038 [hep-ph/9210260] [INSPIRE].
  93. [93]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [INSPIRE].
  94. [94]
    T. Fukuyama, N. Okada and H.M. Tran, Sparticle spectroscopy of the minimal SO(10) model, Phys. Lett. B 767 (2017) 295 [arXiv:1611.08341] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  96. [96]
    K.S. Babu, B. Bajc and S. Saad, New Class of SO(10) Models for Flavor, Phys. Rev. D 94 (2016) 015030 [arXiv:1605.05116] [INSPIRE].Google Scholar
  97. [97]
    Super-Kamiokande collaboration, Review of Nucleon Decay Searches at Super-Kamiokande, in Proceedings, 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, March 12-19, 2016, pp. 437-444 (2016) [arXiv:1605.03235] [INSPIRE].
  98. [98]
    Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Improved lattice computation of proton decay matrix elements, Phys. Rev. D 96 (2017) 014506 [arXiv:1705.01338] [INSPIRE].Google Scholar
  99. [99]
    K.S. Babu, J.C. Pati and Z. Tavartkiladze, Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting, JHEP 06 (2010) 084 [arXiv:1003.2625] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    Super-Kamiokande collaboration, Search for proton decay via p → e + π 0 and p → μ + π 0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
  101. [101]
    K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in Extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].Google Scholar
  102. [102]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
  103. [103]
    P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].
  104. [104]
    M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S.K. Vempati and O. Vives, Soft SUSY breaking grand unification: Leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].
  105. [105]
    MEG collaboration, Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsOklahoma State UniversityStillwaterU.S.A.
  2. 2.Research Center for Nuclear Physics (RCNP)Osaka UniversityIbarakiJapan

Personalised recommendations