Skip to main content

Duality web on a 3D Euclidean lattice and manifestation of hidden symmetries

A preprint version of the article is available at arXiv.

Abstract

We generalize our previous lattice construction of the abelian bosonization duality in 2 + 1 dimensions to the entire web of dualities as well as the Nf = 2 self-duality, via the lattice implementation of a set of modular transformations in the theory space. The microscopic construction provides explicit operator mappings, and allows the manifestation of some hidden symmetries. It also exposes certain caveats and implicit assumptions beneath the usual application of the modular transformations to generate the web of dualities. Finally, we make brief comments on the non-relativistic limit of the dualities.

References

  1. M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].

    ADS  Article  Google Scholar 

  2. C. Wang and T. Senthil, Dual Dirac Liquid on the Surface of the Electron Topological Insulator, Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].

    Article  Google Scholar 

  3. M. Mulligan, Particle-vortex symmetric liquid, Phys. Rev. B 95 (2017) 045118 [arXiv:1605.08047] [INSPIRE].

    ADS  Article  Google Scholar 

  4. D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].

    Article  Google Scholar 

  5. A. Hui, M. Mulligan and E.-A. Kim, Non-Abelian Fermionization and Fractional Quantum Hall Transitions, Phys. Rev. B 97 (2018) 085112 [arXiv:1710.11137] [INSPIRE].

    ADS  Article  Google Scholar 

  6. A. Hui, E.-A. Kim and M. Mulligan, Non-Abelian bosonization and modular transformation approach to superuniversality, Phys. Rev. B 99 (2019) 125135 [arXiv:1712.04942] [INSPIRE].

    ADS  Article  Google Scholar 

  7. M.E. Peskin, Mandelstamt Hooft Duality in Abelian Lattice Models, Annals Phys. 113 (1978) 122 [INSPIRE].

    ADS  Article  Google Scholar 

  8. C. Dasgupta and B.I. Halperin, Phase Transition in a Lattice Model of Superconductivity, Phys. Rev. Lett. 47 (1981) 1556 [INSPIRE].

    ADS  Article  Google Scholar 

  9. W. Chen, M.P.A. Fisher and Y.-S. Wu, Mott transition in an anyon gas, Phys. Rev. B 48 (1993) 13749 [cond-mat/9301037] [INSPIRE].

  10. C.P. Burgess and F. Quevedo, Bosonization as duality, Nucl. Phys. B 421 (1994) 373 [hep-th/9401105] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. E.H. Fradkin and F.A. Schaposnik, The fermion-boson mapping in three-dimensional quantum field theory, Phys. Lett. B 338 (1994) 253 [hep-th/9407182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Phys. Rev. B 89 (2014) 235116 [arXiv:1201.4393] [INSPIRE].

    ADS  Article  Google Scholar 

  15. S. Kachru, M. Mulligan, G. Torroba and H. Wang, Mirror symmetry and the half-filled Landau level, Phys. Rev. B 92 (2015) 235105 [arXiv:1506.01376] [INSPIRE].

    ADS  Article  Google Scholar 

  16. S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].

    Article  Google Scholar 

  20. A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2+1 Dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. F. Benini and S. Benvenuti, \( \mathcal{N} \) = 1 dualities in 2+1 dimensions, JHEP 11 (2018) 197 [arXiv:1803.01784] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. T. Senthil, D.T. Son, C. Wang and C. Xu, Duality between (2 + 1)d Quantum Critical Points, arXiv:1810.05174 [INSPIRE].

  23. H. Goldman and E. Fradkin, Loop Models, Modular Invariance and Three Dimensional Bosonization, Phys. Rev. B 97 (2018) 195112 [arXiv:1801.04936] [INSPIRE].

    ADS  Article  Google Scholar 

  24. D. Arovas, J.R. Schrieffer and F. Wilczek, Fractional Statistics and the Quantum Hall Effect, Phys. Rev. Lett. 53 (1984) 722 [INSPIRE].

    ADS  Article  Google Scholar 

  25. A.M. Polyakov, Fermi-Bose Transmutations Induced by Gauge Fields, Mod. Phys. Lett. A 3 (1988) 325 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. S.C. Zhang, T.H. Hansson and S. Kivelson, An effective field theory model for the fractional quantum hall effect, Phys. Rev. Lett. 62 (1988) 82 [INSPIRE].

    ADS  Article  Google Scholar 

  27. J.K. Jain, Composite fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  28. E. Fradkin and A. Lopez, Fractional Quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B 44 (1991) 5246 [INSPIRE].

    ADS  Google Scholar 

  29. J. Fröhlich and A. Zee, Large scale physics of the quantum Hall fluid, Nucl. Phys. B 364 (1991) 517 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. X.-G. Wen, Topological orders and edge excitations in FQH states, Adv. Phys. 44 (1995) 405 [cond-mat/9506066] [INSPIRE].

  31. S.H. Simon, The Chern-Simons Fermi Liquid Description of Fractional Quantum Hall States, in Composite Fermions, O. Heinonen ed., World Scientific, Singapore, (1998), [cond-mat/9812186].

  32. S. Kivelson, D.-H. Lee and S.-C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46 (1992) 2223 [INSPIRE].

    ADS  Article  Google Scholar 

  33. E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  34. J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact Boson-Fermion Duality on a 3D Euclidean Lattice, Phys. Rev. Lett. 120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].

    ADS  Article  Google Scholar 

  35. D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2+1) dimensions, Phys. Rev. Lett. 117 (2016) 016802 [arXiv:1510.08455] [INSPIRE].

    ADS  Article  Google Scholar 

  36. D.F. Mross, J. Alicea and O.I. Motrunich, Symmetry and duality in bosonization of two-dimensional Dirac fermions, Phys. Rev. X 7 (2017) 041016 [arXiv:1705.01106] [INSPIRE].

    Article  Google Scholar 

  37. J.-Y. Chen and M. Zimet, Strong-Weak Chern-Simons-Matter Dualities from a Lattice Construction, JHEP 08 (2018) 015 [arXiv:1806.04141] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. C. Xu and Y.-Z. You, Self-dual Quantum Electrodynamics as Boundary State of the three dimensional Bosonic Topological Insulator, Phys. Rev. B 92 (2015) 220416 [arXiv:1510.06032] [INSPIRE].

    ADS  Article  Google Scholar 

  39. F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect, Phys. Rev. X 3 (2013) 011016 [arXiv:1209.3058] [INSPIRE].

    Article  Google Scholar 

  41. C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].

    Article  Google Scholar 

  42. M.P.A. Fisher and D.H. Lee, Correspondence between two-dimensional bosons and a bulk superconductor in a magnetic field, Phys. Rev. B 39 (1989) 2756.

    ADS  Article  Google Scholar 

  43. M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40 (1989) 546 [INSPIRE].

    ADS  Article  Google Scholar 

  44. E.H. Fradkin and S. Kivelson, Modular invariance, selfduality and the phase transition between quantum Hall plateaus, Nucl. Phys. B 474 (1996) 543 [cond-mat/9603156] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ho Son.

Additional information

ArXiv ePrint: 1811.11367

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Son, J.H., Chen, JY. & Raghu, S. Duality web on a 3D Euclidean lattice and manifestation of hidden symmetries. J. High Energ. Phys. 2019, 38 (2019). https://doi.org/10.1007/JHEP06(2019)038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2019)038

Keywords

  • Duality in Gauge Field Theories
  • Lattice Quantum Field Theory
  • Nonperturbative Effects