J.C. Maxwell, A treatise on electricity and magnetism, Clarendon Press, Oxford U.K. (1998).
MATH
Google Scholar
M. Faraday, Thoughts on ray-vibrations. Letter to Richard Phillips, Esq. Phil. Mag. 28 (1846) 345, reprinted in Experimental researches in chemistry and physics, M. Faraday, R. Taylor and W. Francis, London U.K. (1859).
P.A.M. Dirac, Gauge-invariant formulation of quantum electrodynamics, Canadian J. Phys. 33 (1955) 650.
P. Mansfield, Faraday’s lines of force as strings: from Gauss’ law to the arrow of time, JHEP 10 (2012) 149 [arXiv:1108.5094] [INSPIRE].
J.P. Edwards and P. Mansfield, Delta-function Interactions for the bosonic and spinning strings and the generation of abelian gauge theory, JHEP 01 (2015) 127 [arXiv:1410.3288] [INSPIRE].
ADS
Article
Google Scholar
J.P. Edwards and P. Mansfield, QED as the tensionless limit of the spinning string with contact interaction, Phys. Lett. B 746 (2015) 335 [arXiv:1409.4948] [INSPIRE].
ADS
Article
MATH
Google Scholar
M.J. Strassler, Field theory without Feynman diagrams: one loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
A. Ilderton, Localisation in worldline pair production and lightfront zero-modes, JHEP 09 (2014) 166 [arXiv:1406.1513] [INSPIRE].
A. Ilderton, G. Torgrimsson and J. Wårdh, Pair production from residues of complex worldline instantons, Phys. Rev. D 92 (2015) 025009 [arXiv:1503.08828] [INSPIRE].
C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].
J.P. Edwards, Contact interactions between particle worldlines, JHEP 01 (2016) 033 [arXiv:1506.08130] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Brink, P. Di Vecchia and P.S. Howe, A lagrangian formulation of the classical and quantum dynamics of spinning particles, Nucl. Phys. B 118 (1977) 76 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Samuel, Color Zitterbewegung, Nucl. Phys. B 149 (1979) 517 [INSPIRE].
ADS
Article
Google Scholar
E. D’Hoker and D.G. Gagne, Worldline path integrals for fermions with general couplings, Nucl. Phys. B 467 (1996) 297 [hep-th/9512080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.P. Balachandran, P. Salomonson, B.-S. Skagerstam and J.-O. Winnberg, Classical description of particle interacting with nonabelian gauge field, Phys. Rev. D 15 (1977) 2308 [INSPIRE].
ADS
Google Scholar
A. Barducci, R. Casalbuoni and L. Lusanna, Classical scalar and spinning particles interacting with external Yang-Mills fields, Nucl. Phys. B 124 (1977) 93 [INSPIRE].
ADS
Article
Google Scholar
P. Salomonson, B.-S. Skagerstam and J.-O. Winnberg, On the equations of motion of a Yang-Mills particle, Phys. Rev. D 16 (1977) 2581 [INSPIRE].
ADS
Google Scholar
F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Particles with non abelian charges, JHEP 10 (2013) 098 [arXiv:1309.1608] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Broda, NonAbelian Stokes theorem, in Advanced electromagnetism, T.W. Barrett ed., World Scientific, Singapore (1995), hep-th/9511150 [INSPIRE].
M.E. Knutt-Wehlau and R.B. Mann, Supergravity from a massive superparticle and the simplest super black hole, Nucl. Phys. B 514 (1998) 355 [hep-th/9708126] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar