Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Discrete symmetries in Heterotic/F-theory duality and mirror symmetry
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Compact, singular G2-holonomy manifolds and M/heterotic/F-theory duality

23 April 2018

Andreas P. Braun & Sakura Schäfer-Nameki

Heterotic/type II duality and non-geometric compactifications

21 October 2019

Y. Gautier, C. M. Hull & D. Israël

Non-perturbative heterotic duals of M-theory on G2 orbifolds

10 November 2021

Bobby Samir Acharya, Alex Kinsella & David R. Morrison

A new twist on heterotic string compactifications

13 September 2018

Bernardo Fraiman, Mariana Graña & Carmen A. Nuñez

Heterotic-F-theory duality with Wilson line symmetry-breaking

03 December 2019

Herbert Clemens & Stuart Raby

The duality between F-theory and the heterotic string in $$D=8$$ D = 8 with two Wilson lines

07 August 2020

Adrian Clingher, Thomas Hill & Andreas Malmendier

Discrete gauge groups in certain F-theory models in six dimensions

04 July 2019

Yusuke Kimura

Non-Cartan Mordell-Weil lattices of rational elliptic surfaces and heterotic/F-theory compactifications

21 March 2019

Shun’ya Mizoguchi & Taro Tani

Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study

29 April 2020

Vivek Saxena

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 30 June 2017

Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

  • Mirjam Cvetič1,2,3,
  • Antonella Grassi2 &
  • Maximilian Poretschkin1 

Journal of High Energy Physics volume 2017, Article number: 156 (2017) Cite this article

  • 293 Accesses

  • 19 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study aspects of Heterotic/F-theory duality for compactifications with Abelian discrete gauge symmetries. We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group \( {\mathbb{Z}}_n \). Such models are obtained by studying first a specific toric set-up whose associated Heterotic vector bundle has structure group \( {\mathbb{Z}}_n \). By employing a conjectured Heterotic/F-theory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compactifications to six dimensions. We provide explicit constructions of mirror-pairs for symmetric examples with \( {\mathbb{Z}}_2 \) and \( {\mathbb{Z}}_3 \), in six dimensions. The Heterotic models with symmetric discrete symmetries are related in field theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stückelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of fibrations with torsional sections and those with multi-sections.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. I, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

  3. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  4. D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].

    ADS  Google Scholar 

  6. M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1) × U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure, JHEP 11 (2015) 204 [arXiv:1507.05954] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Braun and D.R. Morrison, F-theory on genus-one fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].

  11. L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter, F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with \( {\mathbb{Z}}_3 \) gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by Higgsing in four-dimensional F-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Mayrhofer, E. Palti, O. Till and T. Weigand, On discrete symmetries and torsion homology in F-theory, JHEP 06 (2015) 029 [arXiv:1410.7814] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Berglund and P. Mayr, Heterotic string/F theory duality from mirror symmetry, Adv. Theor. Math. Phys. 2 (1999) 1307 [hep-th/9811217] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Cvetič, A. Grassi, D. Klevers, M. Poretschkin and P. Song, Origin of Abelian gauge symmetries in Heterotic/F-theory duality, JHEP 04 (2016) 041 [arXiv:1511.08208] [INSPIRE].

    ADS  Google Scholar 

  22. W. Lerche and S. Stieberger, Prepotential, mirror map and F-theory on K3, Adv. Theor. Math. Phys. 2 (1998) 1105 [Erratum ibid. 3 (1999) 1199] [hep-th/9804176] [INSPIRE].

  23. W. Lerche, S. Stieberger and N.P. Warner, Quartic gauge couplings from K3 geometry, Adv. Theor. Math. Phys. 3 (1999) 1575 [hep-th/9811228] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Lerche, S. Stieberger and N.P. Warner, Prepotentials from symmetric products, Adv. Theor. Math. Phys. 3 (1999) 1613 [hep-th/9901162] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  25. P.S. Aspinwall, K3 surfaces and string duality, in Fields, strings and duality. Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI’96), Boulder U.S.A., 2-28 Jun 1996, pp. 421-540 [hep-th/9611137] [INSPIRE].

  26. B. Andreas, N = 1 Heterotic/F-theory duality, Fortschr. Phys. 47 (1999) 587 [hep-th/9808159] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. P.S. Aspinwall, Aspects of the hypermultiplet moduli space in string duality, JHEP 04 (1998) 019 [hep-th/9802194] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  30. S. Hosono, A. Klemm and S. Theisen, Lectures on mirror symmetry, Lect. Notes Phys. 436 (1994) 235 [hep-th/9403096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, vol. 68, AMS Bookstore (1999).

  32. U. Bruzzo and A. Grassi, Picard group of hypersurfaces in toric 3-folds, Int. J. Math. 23 (2012) 1250028 [arXiv:1011.1003].

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Grassi and V. Perduca, Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts, Adv. Theor. Math. Phys. 17 (2013) 741.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. Braun, T.W. Grimm and J. Keitel, Complete intersection fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  35. P.-K. Oehlmann, J. Reuter and T. Schimannek, Mordell-Weil torsion in the mirror of multi-sections, JHEP 12 (2016) 031 [arXiv:1604.00011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. 25th Anniversary edition, Cambridge University Press (2012).

  37. R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. P.S. Aspinwall, An analysis of fluxes by duality, hep-th/0504036 [INSPIRE].

  39. M. Bershadsky, T. Pantev and V. Sadov, F-theory with quantized fluxes, Adv. Theor. Math. Phys. 3 (1999) 727 [hep-th/9805056] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Berglund, A. Klemm, P. Mayr and S. Theisen, On type IIB vacua with varying coupling constant, Nucl. Phys. B 558 (1999) 178 [hep-th/9805189] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. de Boer et al., Triples, fluxes and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  43. I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (1996) 2599.

    Article  MathSciNet  MATH  Google Scholar 

  44. S.-M. Belcastro, Picard lattices of families of K3 surfaces, math.AG/9809008.

  45. M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104-6396, U.S.A.

    Mirjam Cvetič & Maximilian Poretschkin

  2. Department of Mathematics, University of Pennsylvania, Philadelphia, PA, 19104-6396, U.S.A.

    Mirjam Cvetič & Antonella Grassi

  3. Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia

    Mirjam Cvetič

Authors
  1. Mirjam Cvetič
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Antonella Grassi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Maximilian Poretschkin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Maximilian Poretschkin.

Additional information

ArXiv ePrint: 1607.03176

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cvetič, M., Grassi, A. & Poretschkin, M. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry. J. High Energ. Phys. 2017, 156 (2017). https://doi.org/10.1007/JHEP06(2017)156

Download citation

  • Received: 25 October 2016

  • Revised: 04 April 2017

  • Accepted: 15 May 2017

  • Published: 30 June 2017

  • DOI: https://doi.org/10.1007/JHEP06(2017)156

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Discrete Symmetries
  • F-theory
  • String Duality
  • Superstrings and Heterotic Strings
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.