Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges


We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as “Warsaw basis”. We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

A preprint version of the article is available at ArXiv.


  1. [1]

    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    S. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].

    Article  Google Scholar 

  3. [3]

    A. Salam, Weak and electromagnetic interactions, in Proceedings of the Eighth Nobel Symposium, N. Svartholm ed., Wiley, New York U.S.A., (1968), pg. 367 [INSPIRE].

  4. [4]

    S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

  6. [6]

    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

  7. [7]

    A.V. Manohar, Effective field theories, Lect. Notes Phys. 479 (1997) 311 [hep-ph/9606222] [INSPIRE].

  8. [8]

    S. Willenbrock and C. Zhang, Effective field theory beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    G. Passarino and M. Trott, The Standard Model effective field theory and next to leading order, arXiv:1610.08356 [INSPIRE].

  10. [10]

    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. [12]

    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    G. ’t Hooft, Renormalizable Lagrangians for massive Yang-Mills fields, Nucl. Phys. B 35 (1971) 167 [INSPIRE].

  14. [14]

    B.W. Lee, Renormalizable massive vector meson theory. Perturbation theory of the Higgs phenomenon, Phys. Rev. D 5 (1972) 823 [INSPIRE].

  15. [15]

    K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    Y.-P. Yao, Quantization and gauge freedom in a theory with spontaneously broken symmetry, Phys. Rev. D 7 (1973) 1647 [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    G. Passarino, Field reparametrization in effective field theories, Eur. Phys. J. Plus 132 (2017) 16 [arXiv:1610.09618] [INSPIRE].

    Article  Google Scholar 

  18. [18]

    C. Becchi, A. Rouet and R. Stora, Renormalization of gauge theories, Annals Phys. 98 (1976) 287 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M.Z. Iofa and I.V. Tyutin, Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman method, Theor. Math. Phys. 27 (1976) 316 [Teor. Mat. Fiz. 27 (1976) 38] [INSPIRE].

  20. [20]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  21. [21]

    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge U.K., (1995), pg. 250.

  23. [23]

    B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  25. [25]

    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].

  27. [27]

    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  28. [28]

    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    C. Hartmann and M. Trott, On one-loop corrections in the Standard Model effective field theory; the Γ(hγγ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    B. Lautrup, Canonical quantum electrodynamics in covariant gauges, Kong. Dan. Vid. Sel. Mat. Fys. Med. 35 (1967) [INSPIRE].

  31. [31]

    N. Nakanishi, Covariant quantization of the electromagnetic field in the Landau gauge, Prog. Theor. Phys. 35 (1966) 1111 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: the Standard Model effective field theory toolkit, arXiv:1704.04504 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to A. Dedes.

Additional information

ArXiv ePrint: 1704.03888

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dedes, A., Materkowska, W., Paraskevas, M. et al. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges. J. High Energ. Phys. 2017, 143 (2017). https://doi.org/10.1007/JHEP06(2017)143

Download citation


  • Effective Field Theories
  • Beyond Standard Model