Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Higher derivative field theories: degeneracy conditions and classes

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 June 2017
  • Volume 2017, article number 124, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Higher derivative field theories: degeneracy conditions and classes
Download PDF
  • Marco Crisostomi1,
  • Remko Klein2 &
  • Diederik Roest2 
  • 487 Accesses

  • 54 Citations

  • 9 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We provide a full analysis of ghost free higher derivative field theories with coupled degrees of freedom. Assuming the absence of gauge symmetries, we derive the degeneracy conditions in order to evade the Ostrogradsky ghosts, and analyze which (non)trivial classes of solutions this allows for. It is shown explicitly how Lorentz invariance avoids the propagation of “half” degrees of freedom. Moreover, for a large class of theories, we construct the field redefinitions and/or (extended) contact transformations that put the theory in a manifestly first order form. Finally, we identify which class of theories cannot be brought to first order form by such transformations.

Article PDF

Download to read the full article text

Similar content being viewed by others

Ghost-free higher-order theories of gravity with torsion

Article Open access 17 March 2021

Asymptotic freedom and higher derivative gauge theories

Article Open access 10 May 2021

On the curious spectrum of duality invariant higher-derivative gravity

Article Open access 31 August 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Ostrogradsky, Mémoires sur les equations differentielle relatives au probleme des isopérimètres, Mem. Ac. St. Petersbourg VI 4 (1850) 385.

  2. R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].

    Article  Google Scholar 

  3. E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, John Wiley and Son, New York, U.S.A. (1974).

  4. H.J. Rothe and K.D. Rothe, Classical and Quantum Dynamics of Constrained Hamiltonian Systems, World Scientific Publishing, Singapore (2010) https://doi.org/10.1142/9789814299657.

  5. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

  6. C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].

  7. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free Massive Gravity in the Stúckelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Heisenberg, Generalization of the Proca Action, JCAP 05 (2014) 015 [arXiv:1402.7026] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [arXiv:1105.5723] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

  14. C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].

  15. G. Tasinato, Cosmic Acceleration from Abelian Symmetry Breaking, JHEP 04 (2014) 067 [arXiv:1402.6450] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. M. Hull, K. Koyama and G. Tasinato, Covariantized vector Galileons, Phys. Rev. D 93 (2016) 064012 [arXiv:1510.07029] [INSPIRE].

  17. A. Chatzistavrakidis, F.S. Khoo, D. Roest and P. Schupp, Tensor Galileons and Gravity, JHEP 03 (2017) 070 [arXiv:1612.05991] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].

  19. J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Exploring gravitational theories beyond Horndeski, JCAP 02 (2015) 018 [arXiv:1408.1952] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Deffayet, G. Esposito-Farese and D.A. Steer, Counting the degrees of freedom of generalized Galileons, Phys. Rev. D 92 (2015) 084013 [arXiv:1506.01974] [INSPIRE].

  22. D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Langlois and K. Noui, Hamiltonian analysis of higher derivative scalar-tensor theories, JCAP 07 (2016) 016 [arXiv:1512.06820] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Crisostomi, M. Hull, K. Koyama and G. Tasinato, Horndeski: beyond, or not beyond?, JCAP 03 (2016) 038 [arXiv:1601.04658] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Crisostomi, K. Koyama and G. Tasinato, Extended Scalar-Tensor Theories of Gravity, JCAP 04 (2016) 044 [arXiv:1602.03119] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Ben Achour, D. Langlois and K. Noui, Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations, Phys. Rev. D 93 (2016) 124005 [arXiv:1602.08398] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. C. de Rham and A. Matas, Ostrogradsky in Theories with Multiple Fields, JCAP 06 (2016) 041 [arXiv:1604.08638] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  28. J.M. Ezquiaga, J. García-Bellido and M. Zumalacárregui, Field redefinitions in theories beyond Einstein gravity using the language of differential forms, Phys. Rev. D 95 (2017) 084039 [arXiv:1701.05476] [INSPIRE].

  29. J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP 12 (2016) 100 [arXiv:1608.08135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Heisenberg, R. Kase and S. Tsujikawa, Beyond generalized Proca theories, Phys. Lett. B 760 (2016) 617 [arXiv:1605.05565] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. Kimura, A. Naruko and D. Yoshida, Extended vector-tensor theories, JCAP 01 (2017) 002 [arXiv:1608.07066] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, Healthy degenerate theories with higher derivatives, JCAP 07 (2016) 033 [arXiv:1603.09355] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Klein and D. Roest, Exorcising the Ostrogradsky ghost in coupled systems, JHEP 07 (2016) 130 [arXiv:1604.01719] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Motohashi and T. Suyama, Third order equations of motion and the Ostrogradsky instability, Phys. Rev. D 91 (2015) 085009 [arXiv:1411.3721] [INSPIRE].

  35. M. Henneaux, A. Kleinschmidt and G. Lucena Gómez, Remarks on Gauge Invariance and First-Class Constraints, Proc. Steklov Inst. Math. 272 (2011) 141 [arXiv:1004.3769] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Degrees of Freedom in Massive Gravity, Phys. Rev. D 86 (2012) 101502 [arXiv:1204.1027] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].

  38. A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: Motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  40. A. Padilla and V. Sivanesan, Covariant multi-galileons and their generalisation, JHEP 04 (2013) 032 [arXiv:1210.4026] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Allys, New terms for scalar multi-Galileon models and application to SO(N) and SU(N) group representations, Phys. Rev. D 95 (2017) 064051 [arXiv:1612.01972] [INSPIRE].

  42. V. Sivanesan, Generalized multiple-scalar field theory in Minkowski space-time free of Ostrogradski ghosts, Phys. Rev. D 90 (2014) 104006 [arXiv:1307.8081] [INSPIRE].

    ADS  Google Scholar 

  43. D.B. Fairlie and A.N. Leznov, General solutions of the Monge-Ampere equation in n-dimensional space, J. Geom. Phys. 16 (1995) 385 [hep-th/9403134] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. D. Comelli, F. Nesti and L. Pilo, Massive gravity: a General Analysis, JHEP 07 (2013) 161 [arXiv:1305.0236] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. X. Gracia and J.M. Pons, Gauge Generators, Dirac’s Conjecture and Degrees of Freedom for Constrained Systems, Annals Phys. 187 (1988) 355 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J.M. Pons, New Relations Between Hamiltonian and Lagrangian Constraints, J. Phys. A 21 (1988) 2705 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. M. Henneaux, C. Teitelboim and J. Zanelli, Gauge Invariance and Degree of Freedom Count, Nucl. Phys. B 332 (1990) 169 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. B. Díaz, D. Higuita and M. Montesinos, Lagrangian approach to the physical degree of freedom count, J. Math. Phys. 55 (2014) 122901 [arXiv:1406.1156] [INSPIRE].

  49. P. Dirac, Lectures on Quantum Mechanics, Dover Books on Physics, Dover Publications (2001).

  50. C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. C. De Rham, L. Keltner and A.J. Tolley, Generalized galileon duality, Phys. Rev. D 90 (2014) 024050 [arXiv:1403.3690] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, U.K.

    Marco Crisostomi

  2. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Remko Klein & Diederik Roest

Authors
  1. Marco Crisostomi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Remko Klein
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Diederik Roest
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Remko Klein.

Additional information

ArXiv ePrint: 1703.01623

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisostomi, M., Klein, R. & Roest, D. Higher derivative field theories: degeneracy conditions and classes. J. High Energ. Phys. 2017, 124 (2017). https://doi.org/10.1007/JHEP06(2017)124

Download citation

  • Received: 27 March 2017

  • Accepted: 18 June 2017

  • Published: 23 June 2017

  • DOI: https://doi.org/10.1007/JHEP06(2017)124

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature