How much information is in a jet?

Abstract

Machine learning techniques are increasingly being applied toward data analyses at the Large Hadron Collider, especially with applications for discrimination of jets with different originating particles. Previous studies of the power of machine learning to jet physics have typically employed image recognition, natural language processing, or other algorithms that have been extensively developed in computer science. While these studies have demonstrated impressive discrimination power, often exceeding that of widely-used observables, they have been formulated in a non-constructive manner and it is not clear what additional information the machines are learning. In this paper, we study machine learning for jet physics constructively, expressing all of the information in a jet onto sets of observables that completely and minimally span N-body phase space. For concreteness, we study the application of machine learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD processes. Our results demonstrate that the information in a jet that is useful for discrimination power of QCD jets from Z bosons is saturated by only considering observables that are sensitive to 4-body (8 dimensional) phase space.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].

  3. [3]

    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A. Abdesselam et al., Boosted objects: A probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    F.V. Tkachov, Measuring multijet structure of hadronic energy flow or What is a jet?, Int. J. Mod. Phys. A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].

  6. [6]

    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].

  7. [7]

    P.S. Cherzor and N.A. Sveshnikov, Jet observables and energy momentum tensor, in Quantum field theory and high-energy physics. Proceedings, Workshop, QFTHEP’97, Samara, Russia, September 4–10, 1997, pp. 402–407, (1997), hep-ph/9710349 [INSPIRE].

  8. [8]

    F.V. Tkachov, A theory of jet definition, Int. J. Mod. Phys. A 17 (2002) 2783 [hep-ph/9901444] [INSPIRE].

  9. [9]

    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    L.G. Almeida, M. Backovic, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].

    Article  Google Scholar 

  12. [12]

    P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    J.S. Conway, R. Bhaskar, R.D. Erbacher and J. Pilot, Identification of High-Momentum Top Quarks, Higgs Bosons and W and Z Bosons Using Boosted Event Shapes, Phys. Rev. D 94 (2016) 094027 [arXiv:1606.06859] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks, Phys. Rev. D 95 (2017) 014018 [arXiv:1609.00607] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis, arXiv:1701.05927 [INSPIRE].

  18. [18]

    G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748 [INSPIRE].

  20. [20]

    L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124 [INSPIRE].

  22. [22]

    A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron-hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

  31. [31]

    G.C. Blazey et al., Run II jet physics, in QCD and weak boson physics in Run II. Proceedings, Batavia, U.S.A., March 4-6, June 3-4, November 4-6, 1999, pp. 47–77, (2000), hep-ex/0005012 [INSPIRE].

  32. [32]

    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  37. [37]

    T. Sjötrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  38. [38]

    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  40. [40]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  42. [42]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. [43]

    A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    The HDF Group, Hierarchical Data Format, version 5, 1997-NNNN, http://www.hdfgroup.org/HDF5/.

  45. [45]

    F. Chollet, Keras, https://github.com/fchollet/keras, (2015).

  46. [46]

    F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825.

    MathSciNet  MATH  Google Scholar 

  47. [47]

    N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929.

    MathSciNet  MATH  Google Scholar 

  48. [48]

    V. Nair and G.E. Hinton, Rectified linear units improve restricted boltzmann machines., in ICML, J. Fürnkranz and T. Joachims eds., Omnipress, (2010), pp. 807–814.

  49. [49]

    D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

  50. [50]

    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    A.J. Larkoski and I. Moult, The Singular Behavior of Jet Substructure Observables, Phys. Rev. D 93 (2016) 014017 [arXiv:1510.08459] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].

  57. [57]

    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    E. Izaguirre, B. Shuve and I. Yavin, Improving Identification of Dijet Resonances at Hadron Colliders, Phys. Rev. Lett. 114 (2015) 041802 [arXiv:1407.7037] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches, France, June 1-19, 2015, (2016), arXiv:1605.04692 [INSPIRE].

  61. [61]

    ATLAS collaboration, Measurement of the charged-particle multiplicity inside jets from \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 76 (2016) 322 [arXiv:1602.00988] [INSPIRE].

  62. [62]

    P. Gras et al., Systematics of quark/gluon tagging, arXiv:1704.03878 [INSPIRE].

  63. [63]

    A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].

  64. [64]

    P. Speckmayer, A. Hocker, J. Stelzer and H. Voss, The toolkit for multivariate data analysis, TMVA 4, J. Phys. Conf. Ser. 219 (2010) 032057 [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew Larkoski.

Additional information

ArXiv ePrint: 1704.08249

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, K., Larkoski, A. How much information is in a jet?. J. High Energ. Phys. 2017, 73 (2017). https://doi.org/10.1007/JHEP06(2017)073

Download citation

Keywords

  • Jets
  • QCD Phenomenology